H2 Mathematics 2017 Prelim Exam Paper 1 Question

ANNEX B

XXJC H2 Math JC2 Preliminary Examination Paper 1

H2 Mathematics 2017 Prelim Exam Paper 1 Solution

3 (i)
\n
$$
\sin \left[(2r+1)\theta \right] - \sin \left[(2r-1)\theta \right]
$$
\n
$$
= 2 \cos \left(2r\theta \right) \sin \theta \quad \text{[Show } n\text{]} \quad 2
$$
\n
$$
= 2 \cos \left(2r\theta \right) \sin \theta \quad \text{[Show } n\text{]} \quad 2
$$
\n
$$
= 2 \cos \left(2r\theta \right) \sin \theta \quad \text{[Show } n\text{]} \quad 2
$$
\n
$$
\Rightarrow \cos \left(2r\theta \right) = \frac{\sin \left[(2r+1)\theta \right] - \sin \left[(2r-1)\theta \right]}{2 \sin \theta} = \cos \left(2r\theta \right) \quad \text{[Sine]} \quad 2 \sin \theta
$$
\n
$$
\therefore \sum_{r=1}^{n} \cos \left(2r\theta \right) = \sum_{r=1}^{n} \frac{\sin \left[(2r+1)\theta \right] - \sin \left[(2r-1)\theta \right]}{2 \sin \theta} = \frac{1}{2 \sin \theta} + \sin \left(\frac{\sin 3\theta - \sin \theta}{2 \sin \theta} + \sin \left(\frac{\sin 3\theta - \sin \theta}{2 \sin \theta} \right) + \sin \left(\frac{\sin 2\theta - \sin \theta}{2 \sin \theta} \right) + \sin \left(\frac{\sin \left(2n-1\right) \theta - \sin \left(2n-3\right) \theta}{2 \sin \theta} \right) = \frac{\sin \left[(2n+1)\theta \right] - \sin \theta}{2 \sin \theta} \quad \text{[Show } n\text{]} \quad 2 \sin \theta \quad \text{[Show } n\text{]} \quad
$$

By inspection, amount in the fund at the end of *n*th year $=6000(1.03)^{n} - k(1.03)^{n-1} - k(1.03)^{n-2} - ... - k(1.03)^{n}$

Amount in the fund at the beginning of
$$
(n + 1)
$$
th year
\n= 6000(1.03)ⁿ – k(1.03)ⁿ⁻¹ – k(1.03)ⁿ⁻² – ... – k(1.03) – k
\n= 6000(1.03)ⁿ – k[1+1.03+(1.03)² +···+(1.03)ⁿ⁻¹]
\n= 6000(1.03)ⁿ – k $\left\{\frac{1[1-(1.03)^n]}{1-1.03}\right\}$
\n= 6000(1.03)ⁿ + $\frac{100}{3}$ k[1-(1.03)ⁿ]
\n= $\frac{100}{3}$ [180(1.03)ⁿ + k – k(1.03)ⁿ]
\n= $\frac{100}{3}$ [(180 – k)(1.03)ⁿ + k] [Shown]
\n(i) Given k = 400,
\n $\frac{100}{3}$ [(180 – 400)(1.03)ⁿ + 400] < 1000
\n-220(1.03)ⁿ + 400 < 30
\n(1.03)ⁿ > $\frac{37}{22}$ (or 1.6818)
\n*n* ln 1.03 > ln $\frac{37}{22}$
\n $n > \frac{\ln \frac{37}{22}}{\ln 1.03}$ = 17.6 (3 sf)
\nLeast *n* = 18

Or: use GC, table of values gives least $n = 18$ $n+1 = 19$ Therefore, at the beginning of 19th year, the amount in the fund will be less than \$1000 for the first time **(ii)** When $n+1=16 \Rightarrow n=15$. $\frac{100}{3} \Big[(180 - k) (1.03)^{15} + k \Big] \le 0$ $(180 - k)(1.03)^{15} + k \le 0$ $180(1.03)^{15} + k \left[1 - (1.03)^{15}\right] \leq 0$ $k\left[1-\left(1.03\right)^{15}\right] \leq -180(1.03)^{15}$ $k[(1.03)$ ¹⁵ -1] $\geq 180(1.03)$ ¹⁵ $k \geq \frac{180(1.03)^{1}}{15}$ (1.03) ^{*} 15 15 180 1.03 $(1.03)^{15}$ – 1 $k \ge 502.6$ Least $k = 503$ (nearest integer) Or: from GC (plot graph or table of values), least $k = 503$ (nearest integer) **5 (a)** $(x-2)^2 = a^2(1-y^2)$ ² $\frac{(x-2)^2}{a^2} + y^2 = 1$ *a* $\Rightarrow \frac{(x-2)^2}{2} + y^2 =$ ² $(y-0)^2$ 2 1^2 $\frac{(x-2)^2}{2} + \frac{(y-0)^2}{1^2} = 1$ 1 $(x-2)^2$ (y) *a* $\Rightarrow \frac{(x-2)^2}{2} + \frac{(y-0)^2}{2} = 1,$ $1 < a < 2$ **(b)**(i) $y = \frac{1}{x}$ $f(x)$ *y x* = *O* $x = -\sqrt{2}$ \uparrow \downarrow \downarrow $x =$ $x=\sqrt{2}$ $_{1/2}$ </sub> −1

$$
\overline{OC} = \mathbf{u} + \frac{1}{3}(\mathbf{w} + \mathbf{v} - 2\mathbf{u})
$$

\n
$$
= \frac{1}{3}(\mathbf{u} + \mathbf{v} + \mathbf{w}) \text{ (Show n)}
$$

\n(iii) $\mathbf{u} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}, \mathbf{v} = \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix}, \mathbf{w} = \begin{pmatrix} 0 \\ 0 \\ 1 \end{pmatrix}$
\n
$$
\overline{OC} = \frac{1}{3} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 1 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{1}{3} \\ \frac{1}{3} \\ \frac{1}{3} \end{bmatrix}
$$

\nDirection cosines of \overline{OC} are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}.$
\nDirection cosines of \overline{OC} are $\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}.$
\n
$$
\begin{aligned}\n\mathbf{a} &u = 2 - i \sin^2 \theta, \quad v = 2 \cos^2 \theta + i \sin^2 \theta \\
&= 2 - 2 \cos^2 \theta - 2 i \sin^2 \theta \\
&= 2(1 - \cos^2 \theta) - 2 i \sin^2 \theta \\
&= 2(1 - \cos^2 \theta) - 2 i \sin^2 \theta \\
&= 2(\sin^2 \theta - i \sin^2 \theta) \\
&= 2\sqrt{\sin^4 \theta + \sin^4 \theta} \\
&= 2\sqrt{2 \sin^2 \theta} \\
&= -\tan^{-1} \frac{2 \sin^2 \theta}{2 \sin^2 \theta} \\
&= -\tan^{-1} \frac{2 \sin^2 \theta}{2 \sin^2 \theta} \\
&= -
$$

 $= 0$ 4 $+\left(-\frac{\pi}{4}\right) = -\frac{\pi}{4}$ $-\frac{\pi}{4}$ **(b)** Method 1 Solve *α* first then factorise quadratic expression or use sum of roots $x^2 + (i-3)x + 2(1-i) = 0$ Sub. $x = \alpha \in \square$, $\alpha^2 + (i-3)\alpha + 2(1-i) = 0$ $(\alpha^2 - 3\alpha + 2) + i(\alpha - 2) = 0$ Comparing imaginary parts, $\alpha - 2 = 0$ $\alpha = 2$ $(x^2 + (i-3)x + 2(1-i)) = (x-2)(x-\beta)$ Comparing constants, $2(1-i) = 2\beta$ $\therefore \beta = 1 - i$ Or: Sum of roots, $\alpha + \beta = -(i-3)$ $2 + \beta = 3 - i$ $\therefore \beta = 1 - i$ Method 2 Factorise the quadratic expression first $(x^2 + (i-3)x + 2(1-i)) = (x - \alpha)(x - \beta)$ Comparing coefficients of *x*, $i - 3 = -(\alpha + \beta)$ $\alpha + \beta = 3 - i$ (1) Comparing constants, $\alpha\beta = 2-2i$ (2) From (1), $\beta = 3 - i - \alpha$ (3) Sub. (3) into (2), $\alpha(3-i-\alpha) = 2-2i$ $3\alpha - \alpha^2 - \alpha i = 2 - 2i$ Comparing imaginary parts, $\alpha = 2$ Sub. into (3), $\overline{\overline{\beta} = 3} - i - 2$ \therefore $\beta = 1 - i$ Or: Let $\beta = a + bi$, where $a \in \square$, $b \in \square$ and $b \neq 0$ $(x^2 + (i-3)x + 2(1-i) = (x - \alpha) [x - (a+bi)]$ Comparing coefficients of *x*, $i - 3 = -a - bi - \alpha$ $b = -1$ (Comparing imaginary parts) $a + \alpha = 3$ (1) (Comparing real parts) Comparing constants, $2-2i = \alpha(a+bi)$

 $= \alpha(a-i) = \alpha a - \alpha i$ $\alpha = 2$ (Comparing imaginary parts) Sub. into (1), $\overline{a = 3} - \alpha = 3 - 2 = 1$ \therefore $\beta = 1 - i$ Method 3 Solve *x* first using quadratic formula $x^2 + (i-3)x + 2(1-i) = 0$ $x =$ $(i-3) \pm \sqrt{(i-3)^2 - 4(1) \left[2(1-i) \right]}$ 2 $-(i-3) \pm \sqrt{(i-3)^2 - 4(1) [2(1-i)]}$ $=$ $=$ $3 - i \pm \sqrt{i^2 - 6i + 9 - 8 + 8i}$ 2 $\frac{-i\pm\sqrt{i^2-6i+9-8+8i}}{2} = \frac{3-i\pm\sqrt{2i}}{2}$ 2 $-i±$ $=\frac{3-i\pm(1+i)}{2}$ 2 $-i \pm (1 +$ (use GC to find $\sqrt{2}i$) $= 2$ or $1 - i$ $\therefore \alpha = 2$ and $\beta = 1 - i$ **For comparison purpose**: If GC is **not** used to find $\sqrt{2i}$, then the algebraic works will look as follows: Let $\sqrt{2i} = a + bi$, where $a \in \mathbb{R}$, $b \in \mathbb{R}$ $2i = a^2 - b^2 + 2abi$ Compring real parts, $a^2 - b^2 = 0$ $a^2 = b^2$ $a = \pm b$ (1) Compring imaginary parts, $ab = 1$ (2) When $a = b$, Sub. into (2) , $a^2 = 1$ $a = \pm 1$ When $a = 1$, $b = 1$. When $a = -1$, $b = -1$ $\pm \sqrt{2i} = \pm (1+i)$ When $a = -b$ Sub. into (2) , $-b^2 = 1$ (NA $:b \in \mathbb{D}$) $\therefore x = \frac{3 - i \pm (1 + i)}{2}$ 2 $-i \pm (1 +$ $= 2$ or $1 - i$ $\therefore \alpha = 2$ and $\beta = 1 - i$ **8** (a)(i) Let \overrightarrow{A} cm² be area of the circular patch. $A = \pi r^2$ d d *A r* $= 2\pi r$ Given d *A t* $= 6\pi \text{ cm}^2/\text{s}$, a constant

This means that, in 1 s, *A* increases by 6π cm² constantly.

When
$$
t = 0
$$
, $A = 0$
\nWhen $t = 24$, $A = 24 \times 6\pi = 144\pi$
\n $\pi r^2 = 144\pi$
\n $r = 12$ (reject $r = -12$ since $r > 0$)
\n $\frac{dA}{dr} = \frac{dA}{dr} \times \frac{dr}{dt}$
\n $6\pi = 24\pi \frac{dr}{dt}$
\n $6\pi = 24\pi \frac{dr}{dt}$
\n \therefore rate of change of the radius is $\frac{1}{4}$ cm/s.
\n(a)(ii) $\frac{dA}{dt} = \frac{dA}{dr} \times \frac{dr}{dt}$
\n $6\pi = 2\pi r \frac{dr}{dt}$
\n $6\pi = 2\pi r \frac{dr}{dt}$
\n $4\pi = \frac{6\pi}{2\pi r} = \frac{3}{r}$
\nMethod 1
\nAs *r* increases, $\frac{dr}{dt} = \frac{3}{r} \text{ decreases, } \therefore \frac{dr}{dt}$ will decrease as time passes.
\nMethod 2
\n $\frac{d(\frac{dr}{dt})}{dt} = \frac{d(\frac{3}{t})}{dr} \times \frac{dr}{dt}$
\n $= \frac{-3}{r^2} (\frac{3}{r}) = \frac{-9}{r^3} < 0$
\n $\therefore \frac{dr}{dt}$ will decrease as time passes.
\n(b)(i) $V = \pi r^2 h$
\n $355 = \pi r^2 h$
\n $\pi rh = \frac{355}{r}$
\n $C = K(2\pi rh) + 2K(4r^2)$
\n $= K[2(\frac{355}{r}) + 8r^2]$

$$
= K\left(\frac{710}{r} + 8r^2\right) \qquad \text{(shown)}
$$
\n(b)(ii) $\frac{dC}{dr} = \left(-\frac{710}{r^2} + 16r\right)K$
\nFor C to be a minimum, $\frac{dC}{dr} = 0$.
\n $-\frac{710}{r^2} + 16r = 0$
\n $-710 + 16r^3 = 0$
\n $r^3 = \frac{355}{8}$
\n $r = \sqrt[3]{\frac{355}{8}} = 3.54 (3.5f)$
\n $\frac{d^2C}{dr^2} = \left(\frac{1420}{r^3} + 16\right)K = \left(\frac{1420}{\frac{355}{8}} + 16\right)K = 48K > 0$
\nOr
\n $\left[\begin{array}{c|c}\nr & 3.5 & \sqrt[3]{\frac{355}{8}} \approx 3.54 & 3.6 \\
\frac{dC}{dr} & -1.96K < 0 & 0 & 2.82K > 0 \\
\hline\n\frac{355}{8} & \text{does give the minimum cost.} \\
Rceall & 355 = \pi r^2h \\
h = \frac{355}{\pi r^5} \\
\therefore \frac{h}{r} = \frac{355}{\pi r^3} = \frac{355}{\pi \left(\frac{355}{8}\right)} \\
\hline\n\frac{8}{\pi} & \text{(shown)}$ \n9
\n(i) $\sqrt{3} \cos x - \sin x = R \cos(x + \alpha)$
\n $R = \sqrt{(\sqrt{3})^2 + 1^2} = \sqrt{4} = 2$
\n $\alpha = \tan^{-1} \frac{1}{\sqrt{3}} = \frac{\pi}{6}$
\n(ii) $y = \sqrt{3} \cos x - \sin x = 2 \cos\left(x + \frac{\pi}{6}\right)$
\n $y = \cos x \rightarrow y = \cos(x + \alpha) \rightarrow y = R \cos(x + \alpha)$

Area of (lower) half of the "leaf" is 1 2 $A = \int_0^1$ $\int_0^{\frac{3}{2}} x \, dy$ – area of Δ (Note: $\int_0^{\frac{3}{2}} x \, dy$ = shaded area) $A = 2 \begin{bmatrix} 1 \end{bmatrix}$ $\frac{3}{2}$ x dy - $\frac{1}{2} \left(\frac{3}{2} \right) \left(\frac{3}{2} \right)$ $2\binom{2}{2}$ $2\left[\int_{0}^{\frac{3}{2}} x \,dy - \frac{1}{2}\left(\frac{3}{2}\right)\left(\frac{3}{2}\right)\right]$ $\left[\int_0^{\frac{\pi}{2}} x \, \mathrm{d}y - \frac{1}{2} \left(\frac{3}{2}\right) \left(\frac{3}{2}\right) \right]$ $= 2 \begin{pmatrix} 1 \\ 0 \end{pmatrix}$ $2\left(\int_{0}^{\frac{3}{2}} x \, dy - \frac{9}{2}\right)$ 8 $\left(\int_{0}^{\frac{3}{2}} x dy - \frac{9}{2}\right)$ $\left(\int_0^{\frac{\pi}{2}} x \, dy - \frac{9}{8}\right)$ (Shown) $\boldsymbol{0}$ $2\left(\int_{0}^{\frac{3}{2}} x \, dy - \frac{9}{2}\right)$ 8 $\left(\int_{0}^{\frac{3}{2}} x dy - \frac{9}{2}\right)$ $\left(\int_0^{\frac{3}{2}} x \, dy - \frac{9}{8}\right) = 2 \int_0^1 \frac{3m}{1+m^3} \left(\frac{6m\left(1+m^3\right)-3m^2\left(3m^2\right)}{\left(1+m^3\right)^2} \right)$ $(1 + m^3)^2$ 1 0 1 + m^3 $3)$ $2m^2$ $2m^2$ 3^2 $2\left(\frac{3m}{2}\right)^{\frac{3m}{2}}\frac{6m(1+m^2)-3m^2(3m^2)}{m^2}\Big|dm-\frac{9}{2}$ $1 + m^3$ $(1 + m^3)^2$ 4 $6m(1 + m^3) - 3m^2(3)$ 1 $\frac{m}{\lambda} \left| \frac{6m(1+m^2)-3m^2(3m^2)}{m}\right| dm$ *m* $m(1 + m^3) - 3m^2(3m)$ *m* − + $\left[6m(1+m^3)-3m^2(3m^2)\right]$ $\left[\frac{3m(1+m)}{2m}\right]$ $(1+m^3)^2$ $\begin{bmatrix} 1+m \\ 1+m \end{bmatrix}$ $+m^3$) – + ∫ $=$ $(6m - 3m^4)$ $(1 + m^3)^3$ 4 0 $(1 \t3)^3$ 1 3 $2\int_{0}^{1} \frac{3m(6m-3m^{4})}{(m+3)^{3}}dm-\frac{9}{4}$ $(1 + m^3)^3$ 4 *m* (6*m* – 3*m m m* − − + ∫ $=\frac{15}{4} - \frac{9}{4}$ 4 4 $-\frac{2}{x}$ (by GC) $=\frac{3}{2}$ 2 **(b)** *y* = ln *x* $x = e^y$ $V_{A} = \pi \int_{0}^{c} (e^{y})^{2}$ $\pi \int_0^c (e^y)^2 dy$ $=\pi \int_{0}^{c} e^{2}$ $\pi \int_0^c e^{2y} dy$ $= \pi \frac{1}{2} e^2$ $\mathbf{0}$ 1 2 e *c* $\pi^{\left[1\atop{\right]}e^{2y}}$ $\left[\frac{1}{2}e^{-t}\right]$ $=\frac{\pi}{2} (e^{2c}-1)$ 2 $\frac{\pi}{2} (e^{2c} V_B = (1-c)\pi e^2 - \pi \int_c^1 (e^y)^2 dy$ or $\pi \int_c^1 [e^2 - (e^y)^2] dy$ $= \pi (1-c)$ 1 $(1-c)e^{2}-\pi\left|\frac{1}{2}e^{2}\right|$ 2 \int_c $\pi(1-c) e^{2} - \pi \left[\frac{1}{2}e^{2y}\right]$ $(-c)e^{2}-\pi\left[\frac{1}{2}e^{2y}\right]$ = $\pi (1-c) e^{2} - \frac{\pi}{2} (e^{2} - e^{2c})$ $\pi(1-c) e^{2} - \frac{\pi}{2} (e^{2} - e^{2c})$ $V_A = V_B$ $(e^{2c} - 1)$ 2 $\frac{\pi}{2} (e^{2c} - 1) = \pi (1 - c) e^{2} - \frac{\pi}{2} (e^{2} - e^{2c})$ $\pi(1-c) e^{2} - \frac{\pi}{2} (e^{2} - e^{2c})$ $e^{2c} - 1 = 2e^2(1-c) - e^2 + e^{2c}$ = $2e^2 - 2ce^2 - e^2 + e^{2c}$ $2ce^2 = e^2 + 1$

$$
c = \frac{e^2 + 1}{2e^2}
$$
 (Shown)

H2 Mathematics 2017 Prelim Exam Paper 2 Question

 $\overline{}$

H2 Mathematics 2017 Prelim Exam Paper 2 Solution

$$
\therefore \ln(1 + \sin x) = 0 + x + \frac{(-1)}{2}x^{2} + \frac{1}{3}x^{3} + \frac{(-2)}{4!}x^{4} + ...
$$
\n
$$
= \frac{x - \frac{1}{2}x^{2} + \frac{1}{6}x^{3} - \frac{1}{12}x^{4} + ...}{\frac{2}{12}x^{4} + \frac{1}{12}} = \frac{x - \frac{1}{2}x^{2} + \frac{1}{6}x^{3} - \frac{1}{12}x^{4} + ...}{\frac{4x}{12}} = \frac{4x \sin \theta - 10t}{4x \cos \theta} = \tan \theta - \frac{10t}{x \cos \theta} = \tan \theta - \frac{10t}{x \cos \theta} = \tan \theta - \frac{10t}{x \cos \theta} = \tan \theta - \frac{10t}{x} = \frac{1}{2},
$$
\n
$$
x = 15 \cos \theta, \quad y = 15 \sin \theta - \frac{5}{4}, \quad \frac{dy}{dx} = \tan \theta - \frac{1}{6} \sec \theta
$$
\nEquation of tangent is
\n
$$
y - 15 \sin \theta + \frac{5}{4} = \tan \theta - \frac{1}{6} \sec \theta \left(x - 15 \cos \theta \right)
$$
\n
$$
= \tan \theta - \frac{1}{6} \sec \theta \left(x - 15 \sin \theta + \frac{5}{2} \right)
$$
\n
$$
\therefore y = \frac{\tan \theta - \frac{1}{6} \sec \theta}{\tan \theta - \frac{1}{6} \sec \theta} \frac{1}{x + \frac{5}{4}}
$$
\n3 (i) $A(3, 0, 2), B(1, 0, 3), C(2, -3, 5)$
\n
$$
\overline{AB} = \begin{pmatrix} 1 \\ 0 \\ 3 \end{pmatrix} - \begin{pmatrix} -3 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} + \frac{5}{4} = \begin{pmatrix} 2 \\ -3 \\ 5 \end{pmatrix} - \begin{pmatrix} 3 \\ 0 \\ 2 \end{pmatrix} = \begin{pmatrix} -1 \\ -3 \\ 3 \end{pmatrix}
$$
\n
$$
\overline{AB} \times \overline{AC} = \begin{pmatrix} -2 \\ 0 \\
$$

(ii) Equation of
$$
H_2
$$
 is $2x - y + kz = 14$.
\nSub. $A(3, 0, 2)$ into equation of H_2 ,
\n $2(3)-0+ k(2) = 14$
\n $\therefore k = 4$ (Show)
\nSub. $B(1, 0, 3)$ into LHS of equation of H_2 ,
\nLHS = $2x - y + 4z = 2(1) - 0 + 4(3) = 14 =$ RHS
\n $\therefore B$ is also in H_2 .
\nSince *B* is in both H_1 and H_2 , $\therefore B$ is on the river. (Deduced)
\n(iii) Recall $\overline{AB} = \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix}$, using $A(3, 0, 2)$ or $B(1, 0, 3)$,
\na cartesian equation of the river (line *AB*) is
\n $\frac{x-3}{-2} = z - 2$, $y = 0$ or $\frac{x-1}{-2} = z - 3$, $y = 0$
\n(iv) Since $\overline{BC} \overline{1AB} = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} \begin{pmatrix} -2 \\ 0 \\ 1 \end{pmatrix} = 1(-2) + (-3)(0) + 2(1) = 0$,
\n*BC* is perpendicular to *AB*.
\n $\therefore B$ is the point on the river that is nearest to *C*.
\nExact distance from *C* to the river
\n $= |\overline{BC}| = \begin{pmatrix} 1 \\ -3 \\ 2 \end{pmatrix} = \sqrt{1+9+4} = \frac{\sqrt{14}}{14}$
\n(v) Acute angle between *BC* and H_2
\n $\theta = \sin^{-1} \begin{pmatrix} 2 \\ -3 \\ 2 \end{pmatrix} = \sin^{-1} \frac{13}{\sqrt{14}\sqrt{21}}$
\n $= \frac{49.3}{\sqrt{14}\sqrt{21}} = \sin^{-1} \frac{13}{\sqrt{14}\sqrt{21}}$
\n $= \frac{49.3}{\sqrt{14}\sqrt{21}} \$

$$
\frac{1}{100} \int_{0}^{1} \frac{1}{A} + \frac{1}{100 - A} dA = k + c
$$

\n
$$
\frac{1}{100} [\ln |A| - \ln |100 - A|] = k + c \quad (\because A > 0 \text{ and } 100 - A > 0)
$$

\n
$$
\frac{1}{100} [\ln |A - \ln (100 - A)] = k + c
$$

\n
$$
\frac{A}{100 - A} = 100(k + c)
$$

\n
$$
\frac{A}{100 - A} = e^{\int_{0}^{10(k + c)} e^{-\int_{0}^{10(k + c)} e^{-\int_{
$$

(iii) When $t = 14$ (days), $\left(\frac{1}{5}\ln\frac{8}{3}\right)$ $=\frac{1}{4}e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)(14)}$ *A* 100 − *A* 4 Method 1 Solve algebraically *A* $=$ 3.8963 (5 sf) 100 − *A A* = $(100 - A)(3.8963)$ $= 389.63 - 3.8963A$ 4.8963*A* = 389.63 $A = 79.58(2 \text{ dp})$ For the bread to be deemed safe for human consumption in terms of the amount of preservatives present, $79.58 \le A \le 100$ Method 2 Use GC to plot graphs $y = \frac{1}{6} e^{(\frac{1}{5} \ln \frac{8}{3})(14)} (\approx 3.8963)$ $\frac{1}{1}e^{\left(\frac{1}{5}\ln\frac{8}{3}\right)(14)}$ (≈ 3.8963 $y = \frac{A}{100}$ Use GC to plot = and 100 − *A* 4 Look for the point of intersection (adjust window). $A = 79.58 (2 dp)$ For the bread to be deemed safe for human consumption in terms of the amount of preservatives present, $79.58 \le A \le 100$ NORMAL FLOAT AUTO REAL RADIAN MP
CALCINTERSECT '2=.25*e^((2.8*1n(8/3))) Intersection Y=3.8963006 X=79.576417 *A* $=\frac{1}{4}e^{(\frac{1}{5}\ln \frac{8}{3})t}$ *t* **(iv)** 100 − *A* 4 *A* = $\frac{1}{4}e^{(\frac{1}{5}\ln \frac{8}{3})t} (100 - A)$ t ^t $(100 - A$ 4 $4A = e^{(\frac{1}{5}\ln \frac{8}{3})t} (100 - A) = 100e^{(\frac{1}{5}\ln \frac{8}{3})t} - Ae^{(\frac{1}{5}\ln \frac{8}{3})t}$ $\left[4 + e^{(\frac{1}{5} \ln \frac{8}{3})t}\right]$ $\left| A = 100e^{(\frac{1}{5} \ln \frac{8}{3})t} \right|$ $\left[\begin{array}{ccc} 4+e^{i\theta} & i\end{array} \right]$ $\frac{1}{5} \ln \frac{8}{3}$ ln *t* (ㅎlnㅎ) t 0.196 *t* 100e 100e $A =$ $\frac{1}{t}$ or $\left(\frac{1}{5}\ln\frac{8}{3}\right)t$ $\frac{1}{5} \ln \frac{8}{3}$ $+e^{0.196t}$ 0.196 $4 + e$ ln $4 + e$

Method 1 Consider the complement Total number of 4-digit numbers = $3^4 = 81$ Case 1 AAAB Number of 4-digit numbers = ${}^{3}P_{2} \times \frac{4!}{2!}$ 3! $\times \frac{1}{21} = 24$ $({}^{3}P_{2} = 3 \times 2: 3$ ways to select a digit to be used thrice; 2 ways to select another digit) Case 2 AAAA Number of 4-digit numbers = 3 Total number of 4-digit numbers = $81 - (24 + 3) = 54$ Method 2 Consider cases Case 1 AABC Number of 4-digit numbers = $3 \times \frac{4!}{2!}$ 2! $\times \frac{1}{21} = 36$ (3 ways to select the digit to be used twice) Case 2 AABB Number of 4-digit numbers = ${}^3C_2 \times \frac{4!}{2!}$ $2! \times 2!$ × × $= 18$ $({}^{3}C_{2}$ ways to select the 2 digits each to be used twice) Total number of 4-digit numbers = $36 + 18 = 54$ **7** (i) $H_0: \mu = 420$ H_1 : $\mu \neq 420$ $s^2 = \frac{30}{29}(12)$ $= 12.414$ Under H_0 , since $n = 30$ is large, by Central Limit Theorem, $\sim N$ 420, $\frac{12.414}{20}$ 30 $\bar{X} \sim N\left(420, \frac{12.414}{20}\right)$ $\left(\frac{420}{30}\right)$ approximately. Hence it is **not necessary** for the volumes to have a normal distribution for the test to be valid. Test statistic $Z = \frac{X - 420}{\sqrt{12.414}} \sim N(0, 1)$ 30 $Z = \frac{X - 420}{\sqrt{2(1 - x^2)}}$ ~ N(0,1) approximately α = 0.01 From GC, $z = \frac{116.33}{\sqrt{12.414}}$ 30 $z = \frac{418.55 - 420}{\sqrt{2444}} = -2.2541$ *p*-value = $0.0242(3 \text{ sf})$ Since *p*-value = $0.0242 > \alpha = 0.01$, we <u>do not reject</u> H₀ at 1% level of

(2) The balls are thoroughly mixed before each selection. (ii) Given $X \sim B \left(10, \frac{2}{5} \right)$ $\left(10, \frac{2}{5}\right)$ $P(X \ge 4) = 1 - P(X \le 3)$ $=$ 0.618 (3 sf) **(iii)** Given $E(X) = 4.8$ 2 5 $\Rightarrow \frac{2}{5}n = 4.8$ $n = 12$ (iv) Given $X \sim B\left(n, \frac{2}{5}\right)$ 5 *n* $\left(n,\frac{2}{5}\right)$ $P(X = 0 \text{ or } 1) < 0.01$ $\Rightarrow P(X=0) + P(X=1)$ < 0.01 $3)^n$ (2)(3)ⁿ⁻¹ $5/$ (5)(5) $n \left(\bigcap_{n=1}^{\infty}$ *n* $\Rightarrow \left(\frac{3}{5}\right)^n + n\left(\frac{2}{5}\right)\left(\frac{3}{5}\right)^{n-1}$ < 0.01 From GC, least $n = 14$ **(v)** Without replacement, P(Shawn wins the game) 2 $3(2)(2)$ 5 $5(4)(3)$ 3 (Shown) 5 $(2)(2)$ $=\frac{2}{5}+\frac{5}{5}\left(\frac{2}{4}\right)\left(\frac{2}{3}\right)$ = **(vi)** With replacement, P(Shawn wins the game) $\frac{2}{7} + \frac{2}{7} \left(\frac{3}{7}\right)^2 + \left(\frac{2}{7}\right) \left(\frac{3}{7}\right)^4 + ...$ 2 $\frac{2}{7} + \frac{3}{7} \left(\frac{3}{7} \right) \left(\frac{2}{7} \right) + \frac{3}{7} \left(\frac{3}{7} \right) \left(\frac{3}{7} \right) \left(\frac{3}{7} \right) \left(\frac{2}{7} \right) + ...$ 5 5 $\frac{5}{5}$ 5 $\frac{5}{5}$ 5 $\frac{5}{5}$ 5 $\frac{5}{5}$ 5 5 (5) (5) (5) 2 5 $1 - \frac{3}{5}$ 5 $\frac{5}{9}$ or 0.625 8 $(3)(2), 3(3)(3)(3)(2)$ $=\frac{2}{5}+\frac{3}{5}\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)+\frac{3}{5}\left(\frac{3}{5}\right)\left(\frac{3}{5}\right)\left(\frac{2}{5}\right)\left(\frac{2}{5}\right)+$ $(3)^{2}$ $(2)(3)^{4}$ $=\frac{2}{5}+\frac{2}{5}\left(\frac{3}{5}\right)+\left(\frac{2}{5}\right)\left(\frac{3}{5}\right)+$ = $-\left(\frac{3}{5}\right)^2$ =

 $10 \mid (i)$

$$
y^2 = 0.027897(2000) - 47.985
$$

\n
$$
= 7.809
$$

\n
$$
\therefore y = \frac{2.79}{2.79} (3 \text{ sf}) \text{ or } \frac{2.8}{2.8} (1 \text{ dp, as shown in the table of values})
$$

\n(v) May not be valid as correlation does not necessarily imply causation.
\nOr: May not be valid as there could be other factors relating traffic flow and air
\npolution.
\n**(b)**
$$
y = 2.5x + 3.8
$$

\n
$$
= 2.5(4.4) + 3.8
$$

\n
$$
= 2.5(4.4) + 3.8
$$

\n
$$
= 14.8
$$

\nLet $x = 1.5y-k$
\n $\overline{x} = 1.5\overline{y} - k$
\n $4.4 = 1.5(14.8) - k$
\n $k = 22.2 - 4.4$
\n
$$
= \frac{17.8}{}
$$