

CONVENT OF THE HOLY INFANT JESUS SECONDARY Preliminary Examination in preparation for the General Certificate of Education Ordinary Level 2024

CANDIDATE NAME	
CLASS	REGISTER NUMBER
CHEMISTRY	6092/01
Paper 1 Multiple Choice	26 August 2024
Additional Materials: Multiple Choice Ar	1 hour swer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and register number on the Multiple Choice Answer Sheet provided.

There are **forty** questions on this paper. Answer **all** questions. For each question, there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done on the question paper.

A copy of the Periodic Table is printed on page 16.

The use of an approved scientific calculator is expected, where appropriate.

This	document	consists	of 16	printed	nages
11110	accument		VI 10		paucs.

		2
1	Sulfu	oratory assistant has a mixture of solid sulfur and solid carbon. It is very soluble in carbon disulfide (boiling point 46°C) and slightly soluble in water. Carbon soluble in both solvents.
	A sai Anot	mple of the mixture is shaken with water. This is P. her sample of the mixture is shaken with carbon disulfide. This is Q.
	Whic	h procedure is used to prepare a pure sample of sulfur?
	A	P is distilled and the distillate is evaporated to dryness to obtain sulfur.
	В	P is filtered and the filtrate is allowed to evaporate to dryness to obtain sulfur.
	С	Q is filtered and the residue is allowed to evaporate to dryness to obtain sulfur.
	D	Q is filtered and the filtrate is allowed to evaporate to dryness to obtain sulfur.
2	hydro	udent was given 4.0 g of magnesium carbonate powder and 100 cm³ of 0.1 mol/dm³ ochloric acid. He wants to determine the rate of reaction by measuring the change in mass e reaction mixture.
	Whic	ch apparatus is not likely to be used in this experiment?
	A	conical flask
	В	electronic mass balance
	С	stopwatch
	D	test-tube
3	ln wi	nich situations do the particles move closer together?
		1 A gas is heated from 0 °C to 25 °C.

- The pressure of a gas is increased. 2
- Steam condenses to form water. 3
- Water evaporates at room temperature.
- 2 and 3 D 3 and 4 1 and 2 В 1 and 4

Two bottles are placed close together inside a large container at a temperature of 90 °C. One bottle contains 1.0 g of sulfur dioxide, the other bottle contains 1.0 g of ethanol.

compound	melting point /°C	boiling point /°C
ethanol	–114	78
sulfur dioxide	72	–10

A detector is placed in the container 2.0 m away from the two bottles. The two bottles are opened at the same time.

Which row is correct?

	compound that reaches detector first	explanation
A	ethanol	ethanol has a lower M _r than sulfur dioxide
В	ethanol	liquids diffuse faster than gases
С	sulfur dioxide	gases diffuse faster than liquids
D	sulfur dioxide	ethanol has a higher M _r than sulfur dioxide

5	The	letters	Χ,	Y	and.	Ζı	epresent	different	atoms
---	-----	---------	----	---	------	----	----------	-----------	-------

¹⁷X

37Y

 $^{38}_{18}Z$

Which statement is correct?

- A X and Y are the same element.
- **B** X and Y have same number of neutrons.
- C Y and Z have the same number of electrons.
- D Z has more neutrons than X.
- 6 Why does magnesium oxide have a higher melting point than sodium chloride?
 - A There are more delocalised electrons in magnesium than sodium.
 - B There are more ions in magnesium oxide than in sodium chloride.
 - The electrostatic forces of attraction between magnesium and oxide ions are stronger than those between sodium and chloride ions.
 - D The intermolecular forces of attraction between magnesium oxide are stronger than those between sodium chloride.

7 A stable molecule containing atoms of phosphorus, X, and Y have the following structure.

What elements could X and Y be?

	X	Y
A	С	Н
В	N	C <i>l</i>
C	0	C <i>i</i>
D	Si	н

- 8 Which statement is true regarding diamond and graphite?
 - A Both can conduct electricity.
 - B Both have the same colour.
 - C Both have the same crystalline form.
 - **D** Both produce carbon dioxide and water vapour when completely burned in oxygen.
- 9 A compound contains 52% carbon, 13% hydrogen and 35% oxygen by mass.

What is the empirical formula of the compound?

A CH₃COOH

B CH₃OH

C C₂H₅OH

- D C₄H₁₃O₂
- 10 Ethane burns in oxygen according to the chemical equation:

$$2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O$$

4 dm³ of ethane and 16 dm³ of oxygen were ignited in a reaction vessel. After the reaction, the reaction vessel was cooled down to room temperature.

What is the final volume of gases present in the vessel?

- A 8 dm³
- **B** 10 dm³
- C 20 dm³
- D 22 dm³

11 68 g of hydrogen peroxide is dissolved in water to form an aqueous solution. The solution is heated and decomposed in the presence of manganese(IV) oxide to give 3.6 dm³ of oxygen gas as follows.

$$2H_2O_2 \rightarrow O_2 + 2H_2O$$

What is the percentage purity of hydrogen peroxide?

- A 2.5%
- **B** 5.0%
- C 10.0%
- **D** 15.0%
- 12 Which two oxides will react with sodium hydroxide solution?
 - A calcium oxide and zinc oxide
 - B phosphorus(III) oxide and lead(II) oxide
 - C copper(II) oxide and sulfur dioxide
 - D sulfur dioxide and magnesium oxide
- Which statement about the reaction between ammonium carbonate and dilute hydrochloric acid is **false**?
 - A Ammonium chloride is produced.
 - B Ammonia gas is produced.
 - C The gas evolved turned damp blue litmus paper red.
 - D Water is produced.
- 14 Which salt can be prepared by adding excess carbonate to dilute acid?
 - A lead(II) chloride
 - B magnesium chloride
 - C potassium nitrate
 - D sodium sulfate

Which graph shows the changes in pH as an excess of hydrochloric acid is added to aqueous sodium hydroxide?

16 Calcium nitrate solution is added to filtered tap water.

A white precipitate forms.

Which ion present in the tap water causes the precipitate to form?

- A chloride
- **B** magnesium
- C potassium
- D sulfate
- 17 Which statement about the manufacture of ammonia in the Haber process is incorrect?
 - A 100% yield of ammonia will not be obtained in the reaction.
 - **B** High pressure is used to increase the yield of ammonia.
 - C Iron is used to increase the yield of ammonia.
 - D Nitrogen is obtained from fractional distillation of liquid air.

18 A solution of compound Z reacts with sodium hydroxide solution to form a white precipitate that is insoluble in excess sodium hydroxide solution.

Aluminium powder is then added. The mixture is heated and a gas that turns damp red litmus paper blue is given off.

What could the identity of Z be?

- A aluminium chloride
- B ammonium chloride
- C calcium nitrate
- D zinc nitrate
- 19 Which reagent could be used to distinguish between dilute sulfuric acid and dilute hydrochloric acid?
 - A barium nitrate solution
 - B calcium carbonate
 - C universal indicator
 - D sodium hydroxide solution
- An aqueous solution of a salt is placed in a test-tube and aqueous ammonia is gradually added. The height in the test-tube is plotted against the volume of aqueous ammonia added.

What could the identity of this solution be?

- A aluminium chloride
- B calcium nitrate
- C copper(II) chloride
- D iron(II) sulfate

				8	}							
21		experiment, 10.0 mol/dm³ of aque				ous iron(II) sulfate	was	mixed with 10.0 cm ³				
		FeSO ₄ (aq) +	2Na	OH(aq) → Fe	(OH) ₂ (s) + Na ₂ SO ₄ (aq)					
	What	did the reaction f	lask c	ontain when the	reactio	n was complete?						
	A	A green precipita	ate on	ly.								
	 A green precipitate in a colourless solution. A white precipitate in a green solution. A green precipitate in a green solution. 											
	С	A white precipita	te in a	a green solution.								
	D A green precipitate in a green solution.											
22	In wh SO₂?		es the	sulfur atom hav	e the s	ame oxidation nu	mber a	as the sulfur atom in				
	A	H₂SO₄	В	K₂SO₃	С	Na₂S	D	Na₂S₂O₃				
23	Durir elect	ng electrolysis, 0. rons is passes thr	02 m ough	ol of chromium a molten electroi	is dep lyte col	posited on the cantaining chromium	ithode 1.	when 0.08 mol of				
	Whic	ch substance coul	d be t	he electrolyte?								
	A	CrBr ₂										
	В	CrCl ₄										
	С	Cr ₂ O ₃										
	D	CrSO ₄										
24	Thre	e statements abo	ut fue	l cells are given.								
	1	A hydrogen-oxy	gen fu	iel cell requires a	contir	uous input of fuel	and c	oxygen.				

- 2 In a hydrogen-oxygen fuel cell, hydrogen is burned in oxygen to produce electricity.
- When a hydrogen-oxygen fuel cell is operating, water is the only chemical product.

Which statements are correct?

A 1, 2 and 3 B 1 and 2 only C 1 and 3 only D 2 and 3 only

25 Potassium, rubidium and sodium are in Group 1 of the Periodic Table.

Which statement about these three elements is correct?

- A Rubidium is the strongest reducing agent.
- B Sodium loses its valence electron most easily.
- C Rubidium has a greater tendency to form negative ions than potassium.
- D The reaction between sodium and water is the most violent.
- 26 Some properties of elements in Group 17 and the reasons for these properties are shown.

Which row correctly shows the reason for its corresponding property?

	property	reason
A	bromine displaces iodine from potassium iodide solution	iodine is more reactive than bromine
В	going down the group, the boiling point of the halogens increases	as molecular size increases, the intermolecular forces of attraction become stronger
С	going down the group, the oxidising property of the halogens decreases	as atomic size increases, it is more difficult for the atom to lose an electron
D	going down the group, the reactivity of the halogens decreases	as atomic size increases, it is more difficult for the nucleus to attract seven more electrons

- 27 Which statement about noble gases is incorrect?
 - A They are colourless gases at room temperature and pressure.
 - B They are insoluble in water.
 - C They are used to provide an inert atmosphere for processes like welding.
 - **D** They exist as diatomic molecules.

28	Whic	ch statement be	est supports	s that an unk	known elen	nent could b	e a transitio	n metal?					
	Α	The element	burns in air	to form a wh	nite residue	€.							
	В	The element	forms chlori	ides with the	chemical	formulae X0	Cl₂ and XCl₃.						
	С	The element	forms ionic	compounds	that are se	oluble in wat	ter.						
	D	The oxide of	the element	t can react w	vith acids.								
29	The	table below sh	ows the rea	actions that r	manganes	e undergoes	3.						
		read	ction with			obs	ervation						
		dil	ute acid			hydrogen	gas produce	ed					
		со	ld water			no visit	ole reaction						
			steam			hydrogen g	as is produc	ed					
	Which row gives the correct arrangement of the metals in order of increasing reactivity?												
	A	calcium, man	iganese, lea	ad									
	В	lead, calcium	, mangane	se									
	С	lead, manganese, calcium											
	C	lead, mangar	nese, calciu	ım									
	D	lead, mangar manganese,											
30	D	. •	calcium, lea	ad	ne reactivit	y series of n	netals.						
30	D	manganese,	calcium, lea	ad	ne reactivit _. Fe	y series of n Y	netals. Cu	Ag					
30	D The	manganese,	calcium, lea position of A/	ad metal Y in th Zn	Fe	Y	Cu	Ag					
30	D The	manganese, list shows the Na ich methods co	calcium, lead position of A/ uld be used	ad metal Y in th Zn	Fe netal Y fro	Y	Cu	Ag					
30	D The	manganese, list shows the Na ich methods co	calcium, lead position of A <i>l</i> uld be used lysis of the	ad metal Y in th Zn d to extract n	Fe netal Y fron al oxide	Y	Cu	Ag					

1, 2 and 3 **B** 1 and 2 only **C** 2 only **D** 2 and 3 only

31 The diagrams show four chemical reactions.

Which reaction is endothermic?

addition of water to calcium oxide

combustion of natural gas

thermal decomposition of limestone

reaction of acid with alkali

In the conversion of compound P into compound R, it was found that the reaction proceeded by way of compound Q, which could be isolated. The steps involved were:

 $P \rightarrow Q$; $\Delta H = negative$ $Q \rightarrow R$; $\Delta H = positive$

Which reaction profile agrees with this data?

33 Graphs X and Y represent the results of two experiments demonstrating the catalytic decomposition of hydrogen peroxide.

Which set of values for hydrogen peroxide in each experiment would give the results shown?

	,	X	,	Y
	volume (cm ³)	concentration (mol/dm³)	volume (cm³)	concentration (mol/dm³)
Α	50	2.0	100	1.0
В	100	1.0	50	2.0
С	100	1.0	200	0.5
D	400	0.5	100	1.0

In the fractional distillation of crude oil, different fractions are obtained at the top and bottom of the fractionating column.

Which properties do the fraction obtained at the top of the fractionating column have, compared with the fraction obtained at the bottom?

- 1 more viscous
- 2 burns more easily
- 3 lower boiling point
- **A** 1, 2 and 3 **B** 1 and 2 only
- C 1 and 3 only
- D 2 and 3 only

35 The complete combustion of 20 cm³ of a gaseous alkane requires 100 cm³ of oxygen. Both volumes are measured at room temperature and pressure.

What could be the identity of this alkane?

- A butane
- B ethane
- **C** methane
- **D** propane

Compound W has the empirical formula C₂H₅O and decolourises acidified potassium 36 manganate(VII).

Which structure(s) could be compound W?

D

1, 2 and 4

37 The diagrams show the structures of four organic molecules.

A

Which structures are isomers of one another?

Α 1 and 2 only В 1 and 3 only C 3 and 4 only 1, 3 and 4 38 The polymer, poly(ethene) is formed from its monomer, ethene.

What do poly(ethene) and ethene have in common?

- 1 chemical properties
- 2 empirical formula
- 3 percentage composition
- 4 relative molecular mass
- A 1 and 2 only
- B 2 and 3 only
- C 2 and 4 only
- D 2, 3 and 4 only
- 39 The structure of two monomers are shown below.

Which structure could be a polymer formed between the two monomers?

40 The polymer below is broken down into its monomers by hydrolysis using acid as a catalyst.

Which monomers are obtained from the hydrolysis reaction?

- 1 HOC₆H₄OH
- 2 HOOC(CH₂)₂COOH
- 3 HO(CH₂)₂OH
- 4 HOOCC₆H₄COOH
- **A** 1 and 2 **B** 2 and 3 **C** 2 and 4 **D** 3 and 4

The Periodic Table of Elements

CONTRACTOR AND ALL ABOUT FACE AN	18	2 4	4	10	ž	Sec.	9	Ā	40	36	호	krypton R.4	Z	×	XBriton 404	88	æ	Noger 1	118	ő	noskanago							
watered at the second at the s	4			o	L	autoriti		Ö	35.5	35	ത്	exitive CR	83	-	a cot		₹	astatine	117	ŝ	temassina			3	175	103	٥	wencist
and for the fact that the fact	10			00	0	9000	9	ဟ	32 SS	8	Se	militarios 79	52	P	- Too	2	2	polonium	116	د	ilvermorkum		2 \$	2 ;	E C	<u>5</u>	2	nobekun
AMBRIMA I ferreiora arcessamo como consessora	15				z	nitropen 1.4	12	۵	phosphorus 31	33	As	arsenic 75	51	S	A 20	83	ã	209	15	2	moscovkan		8 4		169	101	ğ	mendelenium
ANY CANCELLAND CONTRACTOR AND CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONT	14			0	ပ	carbon 4.9	14	Ø	29 29 29	32	ල	mwamag 73	20	ŝ	\$ 5	82	2	207	114	ũ	flerbylum		ខិធំ	Ū	167	100	Ē	mym 1
and Avenue	13			S	മ	boron 4.1		¥	aluminum 27	3.1	ගී	20 Z	67	£	inchum 44.fr	2 60	F	maller 204	113	Ę	nitronium		š	2	165	68	ű	emstering 1
example this interpretation of the sections									2	8	Ŋ	£ £	8	8	Cadmiller	8	운	7501 201	112	5	copernicum	•	8 2	3	163	86	ರ	Californian
NA INTERNATIONAL PROPERTY PROPERTY OF THE PROP									Airm Airm	29	ರ	SA FA	47	Ag	# C	262	Au	9.6 19.6	11	S.	roentgenium		8 £	2	159	97	嵛	Devolum
Group									0	28	₹	nckel 59	46	Б	maladum 105	78	à	pletinum 195	110	õ	darmstadeum		\$ C	5	157	8	ర్	COURT
ō				3					රා	27	රි	259 E	45	듄	modum 403	1		ridium 192	109	₹	metherium	**	ខ្វា	3	152	88	Am	Minericum -
ri cinamananananananananananan		-I	-	Total and the state of the stat					90	26	Ф	\$ 9	44	2	nuthersum 404	76	ő	- 195 - 195	108	£	hameium		3 6	5	150	94	2	platonium
Andrews of the state of the sta						,	~~;		~	25	ž	manganese 55	43	ည	Merchretium	75	8	mentum 186	107	쪞	bohrium	•	- £		Dicemental L	93	Ž	replantum
				number	<u> </u>	Mass			9	24	ပံ	chromum 52	4	Š	molytotem 20	7	≥	Lingsien 184	108	Š	*esborgium	90	3 ≥	2	144	85	>	238
***************************************			Key	proton (atomic) number	atomic symbo	name relative atomic mass			'n	23	>	vamedum 51	41	2	mobilem 0.3	22	'n	T.81	105	ದ	dubnium	3	និច់		141	5	ď.	231
ANSIE MATERIAL PROPERTY AND A STATE OF THE S				profon	ate	Tale:	Water Company of the		4	22	-	ttanium 48	\$	Ž	zircorikim O-1	72	Ϊ	Hamily 178	2	æ	eutherfordium	00	8 C	>	140	8	f,	232
AND THE PROPERTY OF THE PROPER			:						es)	21	တ္တ	scandium 45	88	>	A CA	57-71	tenthenoids		89-103	actinoids			<u> </u>		139	83	Ş	actinitari
	7			**	8	un o	12	₩g	Tagonatin 24	8	ඊ		38	တ်	strontum R.R.	56	<u>~</u>	137	88	œ	CHO/km		•	lanthanoids			actinoids	
	•	allesse de la companya de la company		ന		e v	T .	2	SS SS	19	¥	39 Can	37	운	rubidum R.E.	55	රී	133	82	ŭ	fancium 1			anth			व्य	

Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er 140 141 144 - 150 152 157 159 165 167 167 90 91 92 93 94 95 96 97 98 99 100 90m Pu Np Pu Am Cm Bk Cf Es Fm 860im potentinium potentini	Ce Pr Nd Pm Sm Eu Gd Tb Dy Ho Er Tm	58 59 60 61 62 63 64 65 66 67 68 69	25		66 Dy dysposium h 163 28 Cf Cf	65 159 159 Wedelin	Gd Gd 157 157 Cm contum	Eu Europium 152 95 Am	Sm semerium 150 94 Pu pletronium	Pm promathium - 93 Np maphinium	Modernmenn 144 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	59 Pr Pr 141 141 91 Pa protectinium 231	8 9 1 2 B C 2 8 C	La La lanthanum 139 89 Ac actinium
---	-------------------------------------	-------------------------------------	----	--	--	-----------------------------	-------------------------	-----------------------------	---	--	--	---	---	------------------------------------

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{22} \, \text{mof}^{-1}$.

CHIJSed/2024/OLevelPrelim/6092/01

•

CONVENT OF THE HOLY INFANT JESUS SECONDARY Preliminary Examination in preparation for the General Certificate of Education Ordinary Level 2024

	REGISTER NUMBER
RY	6092/02
	22 August 2024
	1 hour 45 minutes
ver on the Question Paper.	
aterials are required.	
	wer on the Question Paper. aterials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in. Write in dark blue or black pen.
You may use an HB pencil for any diagrams or graphs.
Do not use staples, paper clips, glue or correction fluid.

Section A

Answer all questions.

Write your answers in the spaces provided.

Section B

Answer one question.

Write your answers in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 24.

The use of an approved scientific calculator is expected, where appropriate.

2

BLANK PAGE

Section A

Answer **all** questions. The total mark for this section is 70.

1	Some	ionic	equations,	Αt	o F,	are	shown

$$A \qquad H^+ + OH^- \rightarrow H_2O$$

B Fe³⁺ +
$$3OH^- \rightarrow Fe(OH)_3$$

C
$$Cl_2 + 2Br^- \rightarrow Br_2 + 2Ct^-$$

D Na
$$^+$$
 + e $^ \rightarrow$ Na

E
$$2Cl^- \rightarrow Cl_2 + 2e^-$$

F
$$NH_4^+ + OH^- \rightarrow H_2O + NH_3$$

Each letter may be used once, more than once or not at all.

..... and

Give the letter, A to F, for the equation which represents

(a)	a displacement reaction.	[1]
(b)	a precipitation reaction.	[1]
(c)	a redox reaction.	[1]
(d)	a neutralisation reaction.	[1]
(e)	Give the letters of the two equations that, when combined, reaction.	represent a decomposition

[Total: 5]

[1]

2 Steel is an alloy of iron which contains carbon. There are many different types of steel that can be used for different purposes.

		Fig. 2.1	
(a)	In th	ne diagram below, draw the arrangement of atoms in steel. You should complete tend provided.	the
		Legend:	
		carbon	[2]
(b)	Hee	your diagram and Fig. 2.1 to explain why	t,
(13)		steel is a mixture of elements.	
	(i)		
	(ii)	steel is harder than pure iron.	
		······································	[2]
(c)	Des	scribe how the particles in steel allow it to conduct electricity.	
	••••		[1]

(d)	Stainless steel is a type of steel that also contains chromium. Chromium can displet from its sait solution.	ace iron
	Explain how the addition of chromium prevents stainless steel from rusting.	
	•••••••••••••••••••••••••••••••••••••••	
		[2]
	ſ	Total: 81

[Total: 5]

3 The equation for the reaction between tetrachloromethane gas and steam is shown below.

$$CCl_4(g) + 2H_2O(g) \rightarrow CO_2(g) + 4HCl(g)$$
 $\Delta H = -130kJ$

Table 3.1 shows some bond energies.

Table 3.1

bond	C-Cl	H-O	C=O
bond energy in kJ/mol	340	460	805

- (a) Using the information provided, calculate
 - (i) the energy absorbed to break the bonds in the reactants.

								energy	absort	ed			kJ [1]
	(ii)	the	oond e	nergy	for the H	I–C <i>l</i> bor	nd, in k	J/mol.					
								bond e	energy .			kJ/m	no! [1]
(b)				s of bo egativ		king and	l bond-	-making,	why th	e overal	l enthal	py char	nge of
									•••••				
		,,							••••		•••••		
			•••••										
									• • • • • • • • •				[3]

4 Table 4.1 shows some information about three different types of salts and the temperature change when they dissolve in water.

Table 4.1

name of salt	name of acid used to make the salt	name of other compound used to make the salt	temperature change when salt dissolves in water (°C)
calcium chloride	hydrochloric acid	calcium carbonate	+5
ammonium chloride			-20
calcium sulfate		calcium nitrate	N.A.

(a)	Fill in the blanks in the table above.	2
(b)	Explain why calcium carbonate cannot be reacted with the acid you suggested in (a produce calcium sulfate.	a) t
	•••••••••••••••••••••••••••••••••••••••	••••
		. [1]

(c) Complete the energy profile diagrams to show the products and enthalpy changes when calcium chloride, CaCl₂, and ammonium chloride, NH₄Cl, are dissolved in water.

[Total: 6]

5 Fig. 5.1 gives the experimental setup of two cells. Both electrodes P and Q are made of graphite.

(a)

(i)

Write the half-equations for the reactions occurring at the zinc and copper electrodes

in Cell 1.

zinc electrode:

copper electrode:

[2]

(ii) Hence, describe the expected observations in Cell 1.

[2]

(b) The voltage of Cell 1 was found to be 1.10 V.

Suggest the voltage if the copper electrode in Cell 1 was replaced with silver. Explain your reasoning.

(c)	After a few minutes, 16 cm ³ of gas was collected electrode P in Cell 2 . Electrode P is the negative electrode while electrode Q is the positive electrode.						
	What volume of gas would you expect at electrode Q ? Include half-equations to support your answer.						
	[3]						
	[Total: 9]						

A student investigates the reaction of excess magnesium carbonate with 0.10 mol/dm³ of hydrochloric acid at 25°C (experiment 1).

$$MgCO_3 + 2HCl \rightarrow MgCl_2 + H_2O + CO_2$$

Fig. 6.1 shows the volume of carbon dioxide gas released as the reaction proceeds for **experiment 1**.

(a) From Fig. 6.1, determine the volume of carbon dioxide gas obtained from this reaction.

volume of carbon dioxide cm³ [1]

(b) Hence, calculate the volume of 0.10 mol/dm³ of hydrochloric acid used in the experiment. (1 mole of any gas occupies 24 dm³ at room temperature and pressure)

volume of hydrochloric acid cm³ [2]

(c) The student carried out three more experiments to determine the time taken for each reaction to finish. The data obtained is shown in Table 6.1.

Table 6.1

experiment	acid used	concentration of acid (mol/dm³)	temperature (°C)
1	hydrochloric acid	0.10	25
2	hydrochloric acid	0.05	25
3	hydrochloric acid	0.10	40
4	ethanoic acid	0.10	25

	(1)	On the same axes in Fig. 6.1, sketch the graph expected for experiment 2 .	[1]
	(ii)	Write the chemical equation for the reaction taking place in experiment 4.	
			. [1]
(d)		lain, in terms of collisions between reacting particles, how the rate of reaction eriment 3 would differ from experiment 1.	for
			· • • • •
			• • • • •
		•••••••••••••••••••••••••••••••••••••••	
		•	
<i>(</i> \			ניין
(e)		lain why the rate of reaction for experiment 4 is slower than in experiment 1.	
		[Total:	
		[Total.	111

7 'Lean burn' engines are a type of car engine with different conditions from a normal car engine. Table 7.1 shows some information about 'lean burn' engines compared to normal car engines.

Table 7.1

type of engine	amount of air mixed with petrol	operating temperature	concentration of carbon monoxide in exhaust gases	concentration of nitrogen dioxide in exhaust gases
normal	less air	higher	higher	higher
'lean burn'	more air	lower	lower	lower

(a)	Describe how carbon monoxide and nitrogen dioxide are harmful to humans and the environment respectively.
	,
	[2]
(b)	Considering how each gas is produced in the car engine, suggest why 'lean burn' engines produce less carbon monoxide and nitrogen dioxide compared to normal car engines.
	produce less carpon monoxide and hitrogen dioxide compared to normal car engines.
	produce less carpon monoxide and militogen dioxide compared to normal car engines.
	·

(c) Cars have catalytic converters fitted to reduce the problems caused by some of the exhaust gases. The structure of a catalytic converter is shown in Fig. 7.1.

(ii) In terms of oxidation states, explain why this is a redox reaction.	
(ii) In terms of oxidation states, explain why this is a redox reaction.	
	[1]
······································	[2]
(iii) Explain why the catalytic converter does not solve all the environmental procaused by the pollutant gases in the exhaust emissions from cars.	blems
	[1]

[Total: 8]

8		ester that has a pineapple-like aroma, and is used as a flavour enhancer in drinks, has the ctural formula CH₃CH₂CH₂COOCH₂CH₃.
	(a)	State the name of this ester.
		[1]
	(b)	Draw the full structural formulae of the alcohol and carboxylic acid used to make this ester.
		full structural formula of alcohol:
		full structural formula of carboxylic acid:
		[2]
	(c)	Besides using litmus or universal indicator, describe another test you could carry out in the laboratory to distinguish the alcohol from the carboxylic acid.
		[2]

(d) The conversion of the alcohol and carboxylic acid into this ester can be monitored using paper chromatography, with water as the solvent.

A small sample of the reacting mixture was extracted during the chromatography process. Fig. 8.1 shows the resulting chromatogram.

Fig. 8.1

•	•			·
	escribe a test that you o	escribe a test that you can carry out to	escribe a test that you can carry out to determine that	escribe a test that you can carry out to determine that the ester obtai

9 Nuclear Magnetic Resonance (NMR) spectroscopy

NMR spectroscopy is a technique used to provide information about individual functional groups present in an organic compound, and can be used to identify molecular structures.

One common type of NMR is carbon-13 spectroscopy, which detects the ¹³C isotopes present in a sample. The main carbon isotope, ¹²C, does not produce a signal.

¹³C NMR spectra of the isomers of C₅H₁₂

In the straight-chain isomer of C₅H₁₂, **isomer 1**, there are three 'types' of carbon atoms, which can be identified based on their position in the carbon chain:

- the two terminal carbon atoms, labelled **a**, are the same 'type' because they are bonded to three hydrogen atoms and one butyl group, -C₄H₉;
- the next two carbon atoms, labelled b, are the same 'type' because they are bonded to two
 hydrogen atoms, one methyl group, -CH₃, and one propyl group, -C₃H₇;
- the carbon atom in the centre, labelled **c**, is the last 'type' because it is bonded to two hydrogen atoms and two ethyl groups, −C₂H₅;

These three 'types' of carbon atoms give rise to three distinct peaks in the NMR spectrum as shown in Fig. 9.1.

Fig. 9.1

The intensity of each peak corresponds to the number of each 'type' of carbon atom in the structure. Because there are two carbon atoms of 'type' a, two carbon atoms of 'type' b, and one carbon atom of 'type' c, peaks a and b are twice the intensity of peak c.

The alkyl groups, position on the arbitrary scale and relative intensity of the peak corresponding to each carbon atom in **isomer 1** is shown in Table 9.1

Table 9.1

'type' of carbon atom	alkyl group(s) attached to the carbon atom	position on the arbitrary scale	relative peak intensity	
а	-C₄H ₉ (terminal carbon)	14	2	
b	–CH₃ and –C₃H ₇	23	2	
C	–C₂H₅ and –C₂H₅	34	11	

The 13 C NMR spectra and table of information for another isomer of C_5H_{12} , isomer 2, are shown in Fig. 9.2 and Table 9.2.

Fig. 9.2

Table 9.2

'type' of carbon atom	alkyl group(s) attached to the carbon atom	position on the arbitrary scale	relative peak intensity	
а	-C₄H ₉ (terminal carbon)	12	1	
b	-CH₃ and -C₃H ₇	25	1	
С	-CH₃, -CH₃ and -C₂H₅	32	1	
d	?	20	2	

(a)	With specific reference to the number of sub-atomic particles, explain why ¹² C and ¹³ C are isotopes.
	[2]
(b)	With reference to Fig. 9.2 and Table 9.2, explain why carbon atom d in isomer 2 has a relative peak intensity of 2.
	Your answer should include the information missing in Table 9.2.
	[2]

	Use the information provided to describe how the position of the carbon atom in	IT:
•	structure affects the position of its peak on the arbitrary scale.	

	• • • • • • • • • • • • • • • • • • • •		 	 · · · · · · · · · · · · · · · · · · ·
		,		
• • • • • • • • • • • • • • • • • • • •	***************************************	****************	 	
		,,,		LJ.
			 	 [√

(d) (i) Draw the full structural formula of the third isomer of C_5H_{12} .

[1]

(ii) Hence, using the information provided, predict and sketch the ^{13}C NMR spectrum of the third isomer of C_5H_{12} .

[2]

[Total: 10]

CANDIDATE NAME		
CLASS	REGISTER NUMBER	

Section B

Answer **one** question from this section. The total mark for this section is 10.

Propene undergoes addition polymerisation to form polypropene. Polypropene can be made into many plastic items, especially for medical use because it can withstand high temperatures.

Some information about propene and polypropene are shown in Table 10.1 below.

Table 10.1

	propene	polypropene
melting and boiling points	melts at -185°C, boils at -48°C	melts between 150°C to 170°C
relative molecular mass	42	800 to 1200
structure		

(a)	(i)	Explain what is meant by the term addition polymerisation.
		[1
	(ii)	Write the chemical equation for the addition polymerisation of propene to form polypropene, showing their structural formulae.

(b)		ideas about bonding and structure to explain the difference in melting points between ene and polypropene.

		[3]
(c)	Fron poin	n the information provided, explain why polypropene does not have a fixed melting t.
		[1]
(d)	The prod	Resin Identification Coding (RIC) System is a set of symbols appearing on plastic lucts that identify the plastic resin out of which the product is made.
	Tabl	e 10.2 shows the RIC of polypropene and polyethene. The higher the number, the difficult, and hence less cost-effective, the polymer is to recycle.
	11.01	Table 10.2
		polypropene (PP) high density polyethene (HDPE)
		polyproperis (11) Ingit dentity polyetrone (12) = 7
		PP
	(i)	The physical method of recycling plastics like polypropene and polyethene involves melting and cooling the plastics. Describe the next steps of physical recycling.
		[1]
	(ii)	Discuss the economic and environmental issues of recycling plastics that might cause different plastics to have different RIC numbers.
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

		[2]

- Globally, the demand for biofuels is growing, and it is important that the production of these biofuels is environmentally and economically sustainable. Some common biofuels that are widely used include bioethanol and biodiesel.
 - (a) Bioethanol is a fuel obtained from biomass such as sugarcane. It is widely used in Brazil, where it is mandatory to blend ethanol with petrol for use in vehicles.

(i)	Briefly describe how bioethanol is obtained from biomass such as sugarca include a chemical equation in your answer.	
		. [3]
(ii)	Explain why bioethanol is often known as a carbon-neutral fuel.	
		• • • • • •
		. [2]

(b) Biodiesel is the most common biofuel used in Europe. Biodiesel is produced from oils or fats using a process called transesterification, and is similar in composition to diesel.

Some information comparing diesel and biodiesel are shown in Table 11.1.

Table 11.1

property	diesel	biodiesel
source	obtained from fractional distillation of crude oil at 600°C	mixing methanol and recycled fat/oil at 60°C, with H ₂ SO ₄ catalyst
approximate yield	29%	11%
general structure	long-chain alkanes	O−CH ₃ R O O R : long-chain alkyl group

(1)	using biodiesel over diesel.
	[3]
(ii)	Biodiesel can either be made from saturated animal fats or unsaturated vegetable oils that provide the long-chain alkyl group, R .
	Describe a test you could carry out to determine whether R in a particular biodiesel sample was produced from animal fats or vegetable oil.
	[2]
	[Total: 10]

End of Paper

BLANK PAGE

The Periodic Table of Elements

	81	○ <u>무</u> 출 4	10	ş	S 3	∞	Ą	2 €	8	호	wyptow	\$	40	×	XBUOK	131	8	줃	maton		<u></u>	Ö	oganesson	
	<u>}</u>		တ	u.	L Coring		ວັ	35.5 35.5	38	<u></u>	promine	80	83	1-1	Boline	127	න	₹	astatine	1	717	ß	armesament	-
	16		ထ	0	- 16 m	9	ဟ	32 E	34	Se	Selenter	73	52	Þ	tellurium	128	2	2	polonium	į	116	2	ivermonum	1
	5		7	Z	nationen 14	15	۵.	phosphorus 31	33	As	arsenic	75	51	හි	antimony	122	ස	ã	themat	208	Ę	Q W	moscovium	1
	4	agrac (CC) (CC) (CC) (CC) (CC) (CC) (CC) (CC	ဖ	ပ	carbon 12	7	ত	36con 28	32	ඵ	gemanium	73	92	హ	5	119	X	ද	pec	207	114	ũ	Reroviers	1
Transfer of the common of the	ę	The second secon	S	6 0	11 Poron	13	¥	atuminum 27	31	Ga	Calmen	02	67	£	inclum	115	₩	F	thailinn	8	133	£	nihomium	1
Control of		Topica and an analysis and an	Paul					12	30	Zu	75.	92	8	ප	Cadimium	112	8	£	mercury	201	112	ర్	copernicium	1
reprinted and the second and the sec		Kaliffer van Alle George (Alle George						7	29	ට	SOCO	2	47	Aa) je	108	2	Ą	ppo	197	11	8	roentgeritum	1
Group	makana makana makana katana katan	Construction of the state of th						0	28	Z	nicke	B	\$	2	palledium	8	22	đ	pleating	195	110	ő	darmaladtum	****
	V-) commence of the commence o							on.	27	ဝ	copar	28	45	듄	thodkim	3	77	,=	richum	192	109	¥	mellnenum	1
eneer ormandervanantelyddalla gold o bodellou	- I &							œ	26	ď.	S S	S	4	2	ruthersum	101	76	ő	Cumum	190	108	Ï	STATE STATE	1
Market Market Andrews a security and	ma valenta de la composition della composition d	Service and Market Service Ser	•					2	25	Z	Trest Carlo Sale	32	43	٦	technetium	1	25	8	Theman and	186	107	듄	DOPNIM	1
AAAA COMMINISTER OO	DAY SIGNAAN AND AND AND AND AND AND AND AND AND		umber	3	***************************************			9	24	් ර	chrometers	25	42	S	motypom	8	74	>	fundation	<u>%</u>	90	S	**************************************	1
AVACABLE ET LATTER BATTER ET		K ey	oroton (atomic) number	mic sym	rated attention makes			KD.		>			L	2				erer tei		ng-q-para			n designation in	
designations of the second seconds of the second	enteronal control of the control of		nctoro	ato	ratati			ব	22	F		48	40	<u></u>	zirodniem	Ġ	72	Ī	Notive	178	-	****	rutherfordium	+
ANAMANANA (PARENE) PARENEN PAR								ო	24	ď	}	2	g	>		68	57-71	anthanods			89-103	actinoids		
erenanterenanterenanterenanterenanteren	2	And the state of t	**************************************	Be	Carry Con	\$: §	magnesium 24	\$ 8	3 8	3	Ą	S.	d (a constitution	88	83	å	ì	137	88	8		1
A describer de se de describer de se describer de la constitución de l	T.		-	· 🗆	E-1	-	2	m ge	9 0	, ,		30		á		.ec	25	Č)	133	87	ŭ	Mandem	

		***	-	-		**	S		200	e	7.0	28	20	ć,	74
	ò) ()		8	ົວ	Š	3	\$	3	8	- -	3	3	>	
		Ċ		7.4	ć	E	ū	Č	f	Ĉ	Î	ù	Ē	Ş	-
Seive Attent	פי	() (· ·	2	Ī	=	3	,)	2	`	2	1	-	>	ì
	in with services	C. CONTRACTOR	*****	nendvinien.	Completion	Childrenness	STATOORUM	gadolinum	- Carpen	ANSPROSIUM	Pomitina	erbium	Photogram	yttertainn	interlegan.
	28	140	Secretaries.	144	1	150	152	ļ	159	163	188	167	169	<u>†</u>	175
	8	8	10	6	68	94	98	96	76	86	66	8	101	102	103
	3	>		3		•		·	-	r.* }*	-	-			×
And the said of the said of	Ar.	Ę	Contraction.	_	ŝ	<u>a</u>	Am	5	益	ט	ES	Ē	Š	2	j
SCINOTOS S	actinium	Phoritam	1111111111	milian	neptunium	phytomian	muchan	curtum	barkelium	Californium	essentan	farmium	mendeterium	nobelium	Spiremental
	ı	233	******	238	i	1	1]	I,	ł	1	ı	Í	ļ	İ
	Annual Company of the	TO THE PERSON NAMED IN COLUMN	~3	A separate s	s nomena commence commence established	construction and a second construction of the second	Supposed processions on the contract of the co	ів лек таніа-співнескі петектев [†] ь	properties of the parameter contact and the contact of the contact	ON HOUSE A STREET AND A STREET WAS TO SHARE TO STREET.	ente resultationes estatutas A A MARTIN	AND THE PROPERTY OF THE PARTY O	And the second s		

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.). The Avogadro constant, $L = 6.02 \times 10^{23} \, \text{mol}^{-1}$.

CHIJ SECONDARY

Sec 4 Preliminary Examination 20**24** Chemistry 6092 **Mark Scheme**

Paper 1 (40 marks)

No	Answer	No	Answer	ij.	Answer	No	Answer
1	D	11	D		D	31	С
2	D	12	В		В	32	С
3	С	13	В		В	33	D
4	Α	14	В		С	34	D
5	С	15	D		Α	35	D
6	С	16	D		В	36	С
7	В	17	С		D	37	В
8	D	18	C		В	38	В
9	С	19	Α		С	39	D
10.	В	20	С	\$ (1 0)	Α	40	D

Paper 2 Section A (70 marks)

Que	stion	1	Answers	Marks	Total
1	(a)		С	1	
	(b)		В	1	
	(c)		С	1	5
	(d)		Α	1	
	(e)		D and E	1	
2	(a)		[1]: size [1]: composition	2	
	(b)	(i)	The <u>iron and carbon atoms</u> are <u>physically</u> <u>combined</u> / not chemically combined together.	1	
		(ii)	Steel has atoms of different sizes that disrupts the regular arrangement of the metal [1] causing the layers of atoms to slide over each other less easily. [1]	2	8
	(c)		There are <u>free moving electrons</u> to carry charge. Steel is made up of positive ions in a "sea of mobile(delocalised) electrons" 'Sea of delocalised 'electrons move to conduct electricity	1	

Que	stion		Answers	Marks	Total
	(d)		Chromium is more reactive than iron [1] and corrodes/oxidises in place of iron. [1]	2	
3	(a)	(i)	Energy absorbed = 4C-Cl + 4O-H = 4(340) + 4(460) = 3200 kJ	1	
		(ii)	ΔH = energy absorbed + energy released -130 = +3200 [2C=O + 4H-Cl] -130 = +3200 [2(805) + 4H-Cl] 4H-Cl = 1720 H-Cl = 430 kJ/mol	1	
	(b)		There is more energy released [1] in forming the C=O and H-Cl bonds / bonds in CO ₂ and HCl [1] than energy taken in to break the C-Cl and O-H bonds / bonds in CCl ₄ and H ₂ O. [1] OR Energy released/given out in forming the C=O and H-Cl bonds / bonds in CO ₂ and HCl [1] is more[1] than energy taken in /absorbed to break the C-Cl and O-H bonds / bonds in CCl ₄ and H ₂ O. [1]	3	5
4	(a)		Ammonium chloride: hydrochloric acid; ammonium carbonate/aqueous ammonia [reject: ammonium hydroxide] Calcium sulfate: sulfuric acid [1]: 1-2 correct, [2]: all 3 correct	2	
	(b)		An insoluble layer of calcium sulfate forms over the calcium carbonate, preventing further reaction.	1	
	(c)		CaCl ₂ (aq) progress of reaction	3	6

Que	stion		Answers	Marks	Total
			NH4CI(aq)		
			progress of reaction [1/2]: correct shape of each graph [1/2]: correct arrow direction with ΔH label for each graph [1/2]: correct formula and state symbol of each product		
5	(a)	(i)	Zn electrode: Zn \rightarrow Zn ²⁺ + 2e ⁻ [1] Cu electrode: Cu ²⁺ + 2e ⁻ \rightarrow Cu [1]	2	
		(fi)	Any 2: • The zinc electrode decreases in size • The copper electrode increases in size/ a reddish-brown solid forms on the copper electrode • The electrolyte/solution changes from blue to colourless	2	
	(b)		Any value between 1.20 to 1.40V [1] (actual: 1.36V) The difference in reactivity between zinc and silver is greater than the difference in reactivity between zinc and copper. [1]	2	
	(c)		Volume at O should be 8cm³ [1] Every 2 points is 1 mark: P: $2H^+ + 2e^- \rightarrow H_2$ Q: $4OH^- \rightarrow O_2 + 2H_2O + 4e^-$ [1] From the equations for every 4 moles of electrons that pass through electrolysis, 2 moles of hydrogen are produced at the cathode and 1 mole of oxygen is produced at the anode. OR Overall reaction is $4OH^- + 4H^+ \rightarrow 2H_2 + O_2 + 2H_2O$ Mole ratio of $H_2:O_2$ is 2:1, the volume ratio of $H_2:O_2$ is also 2:1	3	9

			Answers	Marks	Total
6	(a)		Volume of CO ₂ = 42 cm ³	1	
	(b)		no. of moles of CO ₂ = 42/1000 ÷ 24 = 0.00175 mol [1] no. of moles of HCl = 0.00175 × 2 = 0.0035 mol volume of HCl = 0.0035 ÷ 0.10 = 0.035 dm ³ = 35 cm ³ [1]	2	
	0	(i)	waturne of carbon disside guer/orn 30	1	
		(ii)	$MgCO_3 + 2CH_3COOH \rightarrow (CH_3COO)_2Mg + H_2O + CO_2$	1	11
	(d)		In experiment 3, the higher temperature leads to the particles possessing more kinetic energy / move faster [1] frequency of collisions increases. Further more particles possess energy greater than or equal to the activation energy. [1] The frequency of effective collisions increases, [1] resulting in a faster rate(or an increase in rate) of reaction. [1]	4	
	(d)		Ethanoic acid is a weak acid, which only partially ionises in water, producing a low concentration of hydrogen ions than hydrochloric acid. [1] Hydrochloric acid is a strong acid which ionises completely in water to produce a high concentration of hydrogen ions[1]	2	

			Answers	Marks	Total
7	(a)		CO: binds to haemoglobin in blood, preventing flow of oxygen around the body, leading to breathing difficulties (or loss of consciousness and even death [1] OR CO binds irreversibly with the haemogobin in red blood cells. This lowers the ability of the hemoglobin to transport oxygen to the rest of the body. This can result in loss of consciouness and death. NO2: cause acid rain, which can corrode limestone buildings/kill aquatic life/kill plants [1]	2	
	(b)		CO: Lean burn engines have more air, so the petrol tends to undergo complete combustion to form CO2 instead of CO / less likely to undergo incomplete combustion to form CO [1] NO2: Lean burn engines have lower operating temperature, so nitrogen and oxygen in the air are less likely to react to form oxides of nitrogen [1] OR NO2 is formed when nitrogen reacts with oxygen at high temperature.	2	8
	(c)	(i)	Catalysts provide an <u>alternate pathway of</u> <u>lower activation energy</u> allowing the reaction to proceed <u>faster</u> .	1	
		(ii)	CO is oxidised as the oxidation state of C increases from +2 in CO to +4 in CO ₂ [1] NO ₂ is reduced as the oxidation state of N decreases from +4 in NO ₂ to 0 in N ₂ [1] OR Carbon in CO is oxidised as the oxidation state of C increases from +2 in CO to +4 in CO ₂ [1] Nitrogen in NO ₂ is reduced as the oxidation state of N decreases from +4 in NO ₂ to 0 in N ₂ [1]	2	
•		(iii)	The catalytic converter still <u>produces</u> <u>carbon dioxide</u> , which causes <u>global</u> <u>warming</u> .	1	

8	(a)		Ethyl butanoate	1	
	(b)		Full structural formula of alcohol: H H H—C—C—O—H H H [1] Full structural formula of carboxylic acid: H H H O H—C—C—C—C H H H O H—C—C—C—C	2	
	(c)		Test: Add reactive metal/carbonate [1] Outcome: If effervescence is observed, it is the acid. If there is no visible change, it is the alcohol. [1] OR Test: Add acidified KMnO ₄ [1] Outcome: If it turns from purple to colourless, it is the alcohol. If there is no visible change, it is the acid. [1]	2	8
	(d)	(i)	C [1] Ethyl butanoate is <u>insoluble in water</u> , while alcohols and carboxylic acids are soluble in water. [1]	2	<u>-</u>
	.	(ii)	If the ethyl butanoate freezes or boils at a fixed temperature, it is pure.	1	
9	(a)		¹² C and ¹³ C both have 6 protons (and 6 electrons), [1] but ¹² C has 6 neutrons while ¹³ C has 7 neutrons. [1]	2	
	(b)		There are 2 carbon atoms of the same 'type' d compared to carbon atoms a , b and c , which only have 1 each. [1] Because both carbon atoms d are attached to a —C ₃ H ₇ alkyl group. [1]	2	
	(c)		The closer the carbon atom is to the end of the carbon chain, the lower its position on the arbitrary scale. [1] The terminal carbon, C _a , has the lowest value at 14 for isomer 1 and 12 for isomer 2. [1] The next carbon atom, C _b , has the second lowest value at 23 for isomer 1 and 25 for isomer 2 / the carbon atom in the centre of each molecule, C _c , has the highest value at 34 for isomer 1 and 32 for isomer 2. [1] OR	3	10

Section B (10 marks)

			Answers	Marks	Totali
10	(a)	(i)	Addition polymerisation occurs when unsaturated monomers/alkenes/many small molecules join together without losing any molecules.	1	
,		(ii)	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	2	10

			Answers	Marks	To
	(b)		Propene has a <u>simple molecular structure</u> while polypropene has a <u>macromolecular structure</u> . [1]		
			Polypropene has <u>stronger intermolecular forces</u> of attraction between its molecules than propene, [1]	3	
			that requires more <u>energy</u> to overcome, hence polypropene has a <u>higher melting point</u> . [1]		
	(c)		Polypropene can have a <u>range of relative molecular masses</u> , depending on how many monomers were used to make the polymer.	1	
	(d)	(i)	The plastics are <u>pulled</u> into long <u>thin strands</u> , then cut into <u>pellets</u> to make new products.	1	
		(ii)	 Any 2: Different plastics may have different costs incurred in the recycling process. Some recycled plastics have lower market value and may not be worth recycling compared to others. Some plastics may result in more toxic chemicals produced during recycling, so the wastewater needs to be treated. 	2	
11	(a)	(i)	$C_6H_{12}O_6 \rightarrow 2C_2H_5OH + 2CO_2$ [1] Every 2 underlined points is 1 mark: Glucose undergoes <u>fermentation</u> at <u>37°C</u> , with <u>yeast</u> as the catalyst, in the absence of oxygen, to form ethanol. [2]	3	
		(ii)	The carbon dioxide produced from the combustion of bioethanol [1] is offset by the carbon dioxide the biomass take in during photosynthesis. [1]	2	
((b)	(i)	Advantages: • Biodiesel is produced at a lower temperature of 60°C compared to diesel at 600°C. [1] • Biodiesel can be obtained from recycled fat and oil, which is more sustainable than diesel, which is obtained from crude oil, a non-renewable resource. [1] Disadvantage: Diesel is obtained in a higher yield of 29% compared to biodiesel,	3	
		(ii)	with yield of only 11%. [1] Add aqueous bromine to the biodiesel sample. [1] If it contains fats, there is no visible change. If it contains oils, the reddish-brown aqueous bromine decolourises. [1]	2	