

TAMPINES SECONDARY SCHOOL

Secondary Four Express / Five Normal Academic Preliminary Examination 2024

NAME		
CLASS	REGISTER NUMBER	
MATHEMATICS		4052/01
Paper 1	22	August 2024
	2 hou	rs 15 minutes
Candidates answer on the Qu		
READ THESE INSTRUCTION		For Examiner's Use
READ THESE INSTRUCTION	IS FIRST ter number on all the work you hand in. y diagrams or graphs.	For Examiner's Use
READ THESE INSTRUCTION Write your name, class and regis Write in dark blue or black pen. You may use an HB pencil for an	IS FIRST ter number on all the work you hand in. y diagrams or graphs.	For Examiner's Use

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is **90**.

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of a triangle
$$ABC = \frac{1}{2}ab\sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\Sigma fx}{\Sigma f}$$

Standard deviation =
$$\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$$

Answer all the questions.

Find the largest prime number that satisfies the inequality $\frac{3x-8}{2} < 28$.

Answer		[2]
--------	--	-----

2 Expand and simplify a-3(a-5b).

3 Factorise $4x^6 - 100y^2$ completely.

(a) Sketch the graph of $y = 2(3)^x$, indicating the points of intersection between the axes, if any.

(b) State a possible equation for the graph shown below.

Answer[1]

[1]

5 At the end of 2023 there were 27000 rhinos living in the wild. The number of rhinos is expected to increase exponentially by 3% each year.

Calculate the number of rhinos expected to be living in the wild at the end of 2027. Give your answer correct to the nearest ten thousand.

Answer	[2
--------	----

6 The table below shows the favourite language that each of 80 students studies.

Language	Frequency
French	20
Japanese	42
Thai	18

Complete the pie chart to show this information.

[2]

7 Use a ruler and compasses only for this question. You must show all your construction arcs.

Line L is the perpendicular bisector of FG. Construct a circle that passes through the points F, G and H.

[2]

8	(a)	By using prime factorization, explain why 242	20 is not a perfect cube.	
	Ans	wer		
	(b)	When written as a product of its prime factors numbers is 2420 and the highest common fac Given that neither of these two numbers is 2	tor of these two numbers is 110.	[2]
9	(a)	Simplify $\left(\frac{27x^{15}}{8y^{12}}\right)^{-\frac{1}{3}}$.	Answer and	[2]
	(b)	(i) Factorize $4xy-2+y-8x$ completely.	Answer	[2]
	,	(ii) Hence solve the equation $7^{4xy-2+y-8x} = 1$.	Answer	[2]
			Answer $x =, y =$	[1]

10 Susan draws the diagram below to show her annual expenditure on flight tickets and hotel stays.

The vertical bars represent the amounts spent on hotel stays.

The line graph represents the amount spent on flight tickets.

(a)	State one aspect of the graph that may be misleading and how this may lead to a misinterpretation of the annual amount spent on hotel stays.	
Ans	wer	
••••		[2]
(b)	Susan claims that, the years when she spends more on flight tickets corresponds to when she spends more on hotel stays.	
	Does the chart support her claim? Justify your answer with reference to the chart.	
Ans	wer The chart support / does not support her claim because	
	•••••••••••••••••••••••••••••••••••••••	
••••		

......[1]

11 (a)	The	fol	lowing	shows	two	sets.
------	------------	-----	-----	--------	-------	-----	-------

$$A = \{4, 8, 12, 16, 20, 24\}$$

$$B = \{8, 16, 24\}$$

Use the following set notations to complete this statement.

 \subset $\not\subset$ $\not\in$ $\not\in$ $\not\in$ $\not\in$

(ii) 22 A

(b) Shade the given set on the Venn diagram below.

[1]

(c) There are 120 students in a group.

The Venn diagram below shows the number of students who study History (H),

Geography (G) and Economics (E).

(i) Find the value of x and state what this value represents.

interpretation to the production of the producti	(i	ii)) Two of the students	who study	Economics	are chosen at	random.
--	----	-----	-----------------------	-----------	------------------	---------------	---------

Find, as a fraction in its simplest form, the probability that one of these students also studies Geography but not History and the other student also studies History but not Geography.

Answer [2]

12	Find five positive integers that satisfy all four of the following conditions.	
	(1) Mode = 5 (2) Median = 5 (3) Mean = 6 (4) Range = 7	
	Answer,,,	[1]
13	The following shows a list of ingredients for a recipe for making shortbread biscuits.	
	Ingredients to make 25 biscuits • 250 grams of flour • 100 grams of sugar • 175 grams of butter	
	(a) Write down the ratio of flour, sugar and butter in its simplest form.	
	Answer:	[1]
	(b) Raju is making shortbread biscuits for a party using this recipe. She wants to make as many biscuits as possible. She has 1.5 kg of flour, 0.5 kg of sugar and 1 kg of butter. Calculate the maximum number of biscuits Raju can make.	
	Answer	[2]

BP~689

- 14 The expression $9-5x+x^2$ can be written in the form $p+(x-2.5)^2$.
 - (a) Find the value of p.

Answer $p = \dots$ [1]

(b) Write down the equation of the line of symmetry of the graph $y = 9 - 5x + x^2$.

Answer[1]

15

The diagram above shows a straight line L. The line cuts the axes at (10, 0) and (0, 4).

(a) Find the equation of line L.

Answer[2]

(b) The point P has coordinates (3, 0). Calculate the shortest distance from P to line L.

Answer[3]

16 The diagram shows part of the regular polygon A joining the equilateral triangle B. Calculate the number of sides of polygon A.

17 P is inversely proportional to the square root of Q. The sum of the values of P when Q=9 and when Q=16 is 21. Find the value of Q when P=100.

AOB is a sector of a circle, centre O. OA = 10 cm and the sector angle is 216° .

(a) Calculate the perimeter of this sector. Give your answer in terms of π .

_		[2]
Answer	cm	L ²

(b) A cone is made from this sector by joining OA to OB. Calculate the volume of the cone.

19 ABCD is a parallelogram. The points E and F lie on AB and BC respectively such that EF is parallel to AC.

(a) Identify two triangles and show that they are congruent.

[2]

Answer

(b) Given that AE = BE, find the ratio of the area triangle BEF: area of trapezium ACEF.

Answer[2]

20	(a)	The <i>n</i> th term of a sequence is given by $2n^2 + 4$.	
		(i) Write down the first 5 terms.	
		Answer,,,	[1]
		(ii) Explain why it is not possible for a term in this sequence to be an odd number.	
	Ans	wer	
			[1]
	(b)	The first 5 terms of another sequence are -1, 5, 15, 29, 47,	
		By comparing this sequence with your answer to (a) , write down the k th term.	
		Answer	[1]
21		4r+5 3	
	Solv	$e^{\frac{4x+5}{x}} = 4 + \frac{3}{x+2}.$	

Answer
$$x =$$
 [3]

22	Two teams played 16 basketball matches.
	Their scores are shown in the stem-and-leaf diagram.

		Т	eam A								J	Ceam B			
	8	8 5	1 6 4	1 2 3	0 1 3	0 0 2 9		3 4 5 6 7		6 2 0 1 3	6 3 2 6	3 4 8	7 6 9	7	
					Key:	0	1	3	İ	6	Mean Team by Te	A and	e of 30 a score	by of 36	
(a) Find	l the me	dian s	core of	Γeam A	4 .										
(b) Find	laka ind	to=q110*	tila rang	sa of th	ae scores	of'	Гезі			er			•••••		[1]
(b) Fm	i the int	erquai	tile rang	ge or m	ic scores	01	ı ca								P4 7
								A	nsw	er					[1]
(c) Use two	your ar teams.	nswers	to part ((a) and	l (b) to n	nake	tw	o co	mm	nents	compari	ing the s	cores (of the	
Answer															
1		· · · · · · · · ·								••••					
			· · · · · · · · · · · · · · · · · · ·				••••	· · · · ·	••••					······	
		· · · · · · · · · · · · · · · · · · ·					••••								
2															
						• • • • •	· •	••••							
		•••••		• • • • • • • • •					• • • • •						[2]
(d) Exp	olain wl Γeam A	ny the	mean m	ay not	be an ap	pro _]	pria	te a	vera	ige to	use to s	summari	ise the	scores	
Answer										•••••					
										• • • • • •				• • • • • • • • • • • • • • • • • • • •	[1]

	11	
A l	pakery makes chicken pies (C), seafood pies (S) and vegetarian pies (V) every day. e matrix M shows the number of pies of each type that are made each day.	
	$\mathbf{M} = \begin{pmatrix} \mathbf{C} & \mathbf{S} & \mathbf{V} \\ 80 & 60 & 20 \\ 70 & 40 & 40 \end{pmatrix} \mathbf{small} \mathbf{large}$	
(a)	Evaluate the matrix $P = 7M$.	
	Answer	[1]
(b)	Each small pie costs \$1.25 to make. Each large pie costs \$2.50 to make. By representing these amounts in a 1×2 row matrix N, evaluate the matrix $T = NP$.	
	Answer	[1]
(c)	Explain what the third element in matrix T represents.	
Ans	rwer	[1]
(d)	One week, the bakery sold all the chicken pies and vegetarian pies, and $\frac{3}{5}$ of each size of	
	the seafood pies that were made that week. The unsold pies were given to the staff of the bakery. Given that the bakery made a profit of 150% for each pie that it sells, calculate the total amount of profit that the bakery made that week.	

A, B, C and D are points on the circle, centre O. Angle $BAD = 68^{\circ}$ and angle $OBC = 52^{\circ}$.

(a) Work out the angle ODC.

Give a reason for each step of your answer.

(b) Given that the length of OB = 5 cm. Calculate the area of the shaded segment BC.

The diagram shows a solid formed by joining two hemispheres and a cylinder. The radius of the small hemisphere and the radius of the cylinder are both 3.6 cm. The length from the centre to the bottom of the large hemisphere is 5.4 cm.

Calculate the total surface area of the solid.

26 The diagram shows the speed-time graph for Anne in the first 2 hours of a cycling race.

(a) The deceleration of Anne's journey after 0.5 hours is 6 km/h. Find the value of ν .

Answer $v = \dots km/h$ [2]

> Time (h)

(b) The area under the speed-time graph represents the distance travelled. Draw the distance-time graph for the first 2 hours of Anne's journey.

Answer

0

Distance (km)

0.5

[2]

End of Paper

TAMPINES SECONDARY SCHOOL

Secondary Four Express / Five Normal Academic PRELIMINARY EXAMINATION 2024

NAME									
CLASS	;						SISTER JMBER		
MATH	EMATICS	-						405	2/02
Paper	2						23 A	ugust 2	2024
							2 hours	15 min	utes
Candida	ates answe	r on the Q	uestion Pa	per.					
Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8	Q9	Total
·									
Write you Write in a You may Do not us Answer a If working Omission The use a If the deg answer to π , u of π .	HESE INS Ir name, cla Iark blue or Use an HB Se staples, Ill the ques Is needed of essention of an appropriate of accu- of three sign ise either y over of mark number of	ass and re- r black pen black pen black pen black pencil for paper clips dions. I for any qual working oved scient uracy is no nificant figur our calcula to is given	gister num any diagra s, glue or c uestion it m will result ific calcula t specified ator value c in brackets	ber in the arms or grace correction for the second in the que answers in the factor is expensed answers in the second in the sec	phs. fluid. own with th narks. ected, wher estion, and degrees to nless the q	e answer. Te appropr if the ansv to one deci question re	iate. ver is not e mal place. equires the	answer in	

This document consists of 22 printed pages and 2 blank pages.

Mathematical Formulae

Compound Interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = $\pi r l$

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of a triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\Sigma fx}{\Sigma f}$$

Standard deviation =
$$\sqrt{\frac{\Sigma f x^2}{\Sigma f} - \left(\frac{\Sigma f x}{\Sigma f}\right)^2}$$

	(a)	Simplify	$\frac{6(a+1)^3}{7b}$:	9(a+1)	
I	(4)	Simping	7 <i>h</i>	286	

(b)
$$x = a + \frac{bv^2}{k}$$

(i) Find x when a = 2, b = 3, v = -4 and k = 5.

Answer
$$x = \dots$$
 [1]

(ii) Rearrange the formula to make v the subject.

(c)	Solve	the	simultaneous	equations
-----	-------	-----	--------------	-----------

$$4x + 7y = -23$$

$$6x - 2y = 3$$

You must show your working.

(d) Write as a single fraction in its simplest form
$$\frac{x^2}{(x+y)(x-3y)} - \frac{x-y}{x-3y}$$

2	(a) Faiz invested \$25 000 in an account which paid simple interest.
	At the end of 9 months, the value of the investment was \$26 500.
	Calculate the interest rate per annum of the investment.

Answer	***************************************	%	[2]
--------	---	---	-----

(b) Jane exchanged 500 Singapore dollars (\$) into Thai baht (THB) when the exchange rate was \$1 = 26.77 THB. She travelled to Thailand and spent 10 600 THD.

On her return to Singapore, she exchanged the remaining Thai baht into dollars with the exchange rate \$1 = 26.88 THB.

Calculate the amount she received in dollars. Correct your answer to the nearest cent.

Answer \$.....[2]

	6		
(c)	The cash price of a furniture set was \$2700. Kim bought the set under a hire purchase scheme: 15% deposit and monthly instalments of \$68 for 36 months.		
	Calculate the amount of interest paid as a percentage of the cash price.		
	Answer	%	[3]
(d) By selling an item at 25% discount off the marked price, a shopkeeper still makes 10% profit on his cost. If the cost price is \$180, calculate the marked price of the item.		

The diagram shows a rectangular cardboard ABCD with AB = (3x+1) cm and AD = (x+13) cm. A square of side 3 cm is cut from each corner. The remaining cardboard is then folded along the dotted lines to form an open rectangular box with base PQRS and height 3 cm. The volume of the tray is 930 cm³.

(a) Form an equation, in terms of x, to represent this information and show that it simplifies to $3x^2 + 16x - 345 = 0$.

(b)	Solve the equation $3x^2 + 16x - 345 = 0$.
	Give your solutions correct to two decimal places.

Answer
$$x =$$
 or $x =$ [3]

(c) Find the length of the diagonal SQ.

4	(a) A is the point $(3, 7)$ and B is the point $(13, -8)$.
	(i) Find $ \overrightarrow{AB} $.

(ii) Given that $\overrightarrow{BA} = 2\overrightarrow{AP}$, find the coordinates of P.

Answer (..... ,) [2]

Answer [2]

(b)

In triangle OCB, A is the midpoint of OC and P is the point on CB such that $CP = \frac{3}{4}CB$. The line OB produced to D such that OB = 2BD. $\overrightarrow{OA} = 2a$ and $\overrightarrow{OB} = 2b$.

(i) Express \overrightarrow{CP} in terms of a and b, as simply as possible.

4	[2]
Answer	 L

(ii) Express \overrightarrow{AP} in terms of **a** and **b**, as simply as possible.

	[1]
Angwar	

(iii)	Show	that A, F	and D	lie	on the	same	straight	line.
-------	------	-------------	---------	-----	--------	------	----------	-------

(iv) Find $\frac{\text{Area of }\Delta OCB}{\text{Area of }\Delta CPD}$.	Answer	[3]
	Answer	[1]

A, B, C and D are four points on level ground, with B due east of A. AC = 43 m, CD = 32 m, AD = 67 m, angle $CAB = 52^{\circ}$ and angle $ABC = 33^{\circ}$.

(a) Calculate the bearing of B from C.

	[2]
Answer	 [~]

(b) Calculate AB.

(c) Calculate angle CDA.		
	Answer	[3]
(d) A drone hovers 60 m vertically above D.		
Find the angle of depression of A from the drone		
Find the angle of depression of A from the drone		
Find the angle of depression of A from the drone	·.	
Find the angle of depression of A from the drone		
Find the angle of depression of A from the drone		
Find the angle of depression of A from the drone		
Find the angle of depression of A from the drone		
Find the angle of depression of A from the drone		
Find the angle of depression of A from the drone		
Find the angle of depression of A from the drone		
Find the angle of depression of A from the drone		
Find the angle of depression of A from the drone	Answer	[2]
Find the angle of depression of A from the drone		[2]

The diagram shows a circle with centre O. TA and TB are tangents to the circle at A and B respectively. AT produced meets OB produced at X.

(a) Show that triangle *OAX* is similar to triangle *TBX*. Give a reason for each statement you make.

[2]

- **(b)** XB = 12 cm and TX = 13 cm.
 - (i) Find OA.

Answer cm [3]

(b) (ii)	Calculate, as a fraction in its simplest form, $\frac{\text{area of triangle } TBX}{\text{area of quadrilateral } OATB}.$	the numerical value of the ratio	
		Answer	[2]
(iii)	Calculate the reflex angle AOB in radians.		

[1]

7 (a) Complete the table of values for $y = 10 - x - \frac{16}{x}$.

x	1	2	3	4	5	6	7	8	9
y	-7	0	1.7		1.8	1.3	0.7	0	-0.8

- (b) On the grid opposite, draw the graph of $y = 10 x \frac{16}{x}$ for $1 \le x \le 9$. [3]
- (c) By drawing a tangent, find the gradient of the curve at x = 3.

(d) Use your graph to solve $9-x-\frac{16}{x}=0$.

Answer
$$x =$$
 or $x =$ [2]

- (e) The straight line y = mx 1 intersects the curve $y = 10 x \frac{16}{x}$ at two points.
 - (i) Write down and simplify the equation, in terms of m, in the form $Ax^2 + Bx + 16 = 0$, which is satisfied by the values of x at the points of intersection.

(ii) If the values of y at the points of intersection are greater than or equal to zero, find the least value of m.

Answer
$$m = \dots$$
 [1]

8 The masses, in grams, of a batch of 300 eggs are recorded.
The cumulative frequency curve shows the distribution of the masses.

- (a) Use the curve to find
 - (i) the median mass of the eggs,

(ii) the interquartile range,	Answer	g	[1]
(iii) the 10 th percentile.	Answer	g	[2]
	Answer	g	[1]

(b)	An egg is classified as 'Medium' if its mass is greater than or equal to 50 g but less
	than 56 g. Two eggs are chosen at random.
	Calculate the probability that both are 'Medium' eggs.

	LJ.
ver	1.2

(c) The masses, in grams, of a second batch of 300 eggs are recorded and are represented by the box-and-whisker diagram below.

Masses of eggs from second batch

20 30 40 50 60 70 80

Mass (g)

(i) Which batch of the eggs has more consistent mass? Justify your answer using appropriate figures.	
	[1]
(ii) The right whisker is longer than the left whisker.	
Explain what this tells us about the distribution of the data set.	
	[1]

[Turn over for Question 9]

9 The table shows the utility charges for Chen's family in July 2024. It includes the charges for utilities such as electricity (in kilowatt-hours), gas (in kilowatt-hours), water (in cubic metres) and refuse removal. The charges for electricity, gas and water are dependent on their usage while refuse removal is a fixed amount.

	Usage	Rate (\$)	Amount (\$)	Total (\$)
Electricity Services	289 kWh	p	86.09	86.09
Gas Services	11 kWh	0.2312	2.54	2.54
Water Services	8.5 Cu M	1.2900	10.97	
Waterborne Tax	8.5 Cu M	1.0000	8.50	
Water Conservation Tax	\$10.97	50 %	5.49	24.96
Refuse Removal	1 Qty	9.00	9.00	9.00
Subtotal			122.59	122.59
GST	\$122.59	9%	r	r
Current Charges: (inclusive of GST)				S

(a) Calculate the values of p, r and s.

Answer	p	=	•	• 1	 •	•	•	٠	• •	• •	•	•	 •	•	 ٠.	-	•	•		•	 	•				
	r	=					•					• •			 				•		 	•				
	s	=													 ٠.						 			[3	3]	

(b) Chen considers installing an air-conditioner in his home at the beginning of August. He finds the following information from the National Environmental Agency (NEA) website on energy-efficient appliances and online electrical store.

Model of air-	Energy-efficient	Annual Energ	gy Cost (\$) **					
conditioner	label*	For 6-hour usage/day	For 7-hour usage/day					
A	111	792	923					
В	7777	616	717					
C	7111	789	894					
D	11111	552	643					
	1111	594	688					

^{*} more ticks $(\sqrt{})$ indicate more energy-efficient

Tips on Buying Energy-Efficient Air-Conditioner

- Choose an energy efficient air-conditioner with more ticks on the energy label.
- Choose models with lower Life Cycle Costs (LCC).
 LCC = Purchase Price + Annual Energy Cost × 7

Model of air-conditioner	A	В	C	D	Е
Purchase Price \$ (excluding GST)	1690	2749	1989	3499	3305

The chart shows Chen's electricity consumption trend:

Chen considers buying an air-conditioner with at least 4-ticks label, with low LCC and intends to use it for 6 hours each day. He expects an increase in electricity consumption in August, in addition to the 289 kWh recorded in July. However, he wants to keep his August total electricity consumption to be below July National average.

^{**} Annual Energy Cost is based on current rate in utility charge, excluding GST Example: If air-conditioner model A is used for 6 hours daily, the annual energy cost is \$792.

Assuming the costs for gas, water services and refuse removal charge remain unchanged, suggest the model of air-conditioner he should opt for and estimate the August utility charge. Justify any decision you make and show your calculations clearly.

BLANK PAGE

Tampines Secondary School

Sec 4E/5NA/4NA OOS Math Prelim Exam Paper 1 2024 Marking Scheme

Total Marks: 90 v = follow through

No.	Answers	Marks
1	3x-8 < 56	M1
	3x < 64	
	x < 21.3	
	The largest prime number is 19	A1
2	-2a+15b	B1
3	$4(x^3 - 5y)(x^3 + 5y)$	B1 for $4(x^3-5y)(x^3+5y)$
		or $(2x^3 - 10y)(2x^3 + 10y)$
		seen
4(a)		B1
	$y = 2(3)^{x}$	
(b)	p = -3	B1
5	Total number of rhinos = $27000 \left(1 + \frac{3}{100}\right)^4$	M1
	(100)	A1

No.	Answers	Marks
6		90° for French B1
l:	Thai French	Thai and Japanese with
	Thai French	correct angles measured B1
	· ·	
	Japonese	
7	,	B1 perpendicular line of GH drawn.
:		
		B1 for the circle drawn passing through F, G and H
	\L	and has the centre at the intersection of the two lines
	G	
	The state of the s	
	Manager of the state of the sta	

No.	Answers	Marks
8(a)	$2420 = 2^2 \times 5 \times 11^2$	B1
	Not all the powers of the prime factors are multiples of 3, hence 2420 is not a perfect cube.	B1
(b)	LCM = $2420 = 2^2 \times 5 \times 11^2$ HCF = $110 = 2 \times 5 \times 11$	
	The two numbers are $2^2 \times 5 \times 11 = 220$ and $2 \times 5 \times 11^2 = 1210$	B1, B1
9(a)	$\left(\frac{27x^{15}}{8y^{12}}\right)^{-\frac{1}{3}} = \left(\frac{8y^{12}}{27x^{15}}\right)^{\frac{1}{3}}$	
	$=\frac{2y^4}{3x^5}$	B1 for 2y ⁴
		B1 for $3x^5$
(b)(i)	(y-2)(4x+1)	B1, B1
(ii)	(y-2)(4x+1) = 0	٧
	$y = 2 \text{or} x = -\frac{1}{4}$	√B1 for both correct values
10(a)	For the vertical bars, the area of each bar is not directly proportional to the height, hence readers might be misled that the amount spent on hotel stays in 2021 is about 4 times that in 2020 instead of only 2 times as shown by the height. [Accept other reasonable responses]	B1 for misleading fact B1 for explanation of why this misleading fact cause misinterpretation.
(b)	The chart does not support her claim because between 2021 and 2022, the amount spent on flight increases but the amount spent on hotel stays decreases. [Accept other reasonable responses]	B1

No.	Answers	Marks
11(a)	Million for feedback and a substitute of the sub	D1
(i)	C	B1
(ii)	∉	B1
(b)	E P Q P UQ'	B1
(c)(i)	x = 21	B1
(ii)	$ \left(\frac{21}{120} \times \frac{20}{119} \times \frac{74}{118}\right) + \left(\frac{74}{120} \times \frac{21}{119} \times \frac{20}{118}\right) + \left(\frac{21}{120} \times \frac{74}{119} \times \frac{20}{118}\right) $ $ = \frac{111}{2006} \text{or } 0.0553 $ Alternative Method $ \left(\frac{21}{120} \times \frac{20}{119} \times \frac{74}{118}\right) = \frac{111}{119} $	M1 for $\frac{21}{120} \times \frac{20}{119} \times \frac{74}{118}$ seen M1 for addition A1
	$\left(\frac{21}{120} \times \frac{20}{119} \times \frac{74}{118}\right) \times 3 = \frac{111}{2006}$ or 0.0553	M2 + A1
12	3, 5, 5, 7, 10 or 4, 5, 5, 5, 11	B1
13(a)	10:4:7	B1
(b)	Flour: Sugar: Butter 1500: 500: 1000 $1500 \div 250 = 6$ $500 \div 100 = 5$ $1000 \div 175 = 5$ Maximum number of biscuits made = 5×25	M1
	=125	A1

No.	Answers	Marks
14(a)	$x^{2} - 5x + 9 = (x - 2.5)^{2} - \frac{25}{4} + 9$	Turkan dhinasa an Tukaharran in Higgs, 120
	$=\frac{11}{4}+(x-2.5)^2$	
	$p = \frac{11}{4}$ or $p = 2.75$	
(b)	$x = \frac{5}{2} \text{or} x = 2.5$	B1 B1
15(a)	$y = -\frac{2}{5}x + 4$	B1 for the correct gradient B1 for the correct y-intercept
(b)	Let the shortest distance from P to line L be h .	
	Let θ be the angle made between the line and the x-axis.	
	$\tan \theta = \frac{4}{10} \Rightarrow \theta = 21.8014^{\circ}$	M 1
	$\frac{h}{7} = \sin 21.8014$	M 1
	$h = 7 \times 0.713 \approx 2.60$	A1
	Alternative Method	
	$\frac{h}{4} = \frac{7}{\sqrt{116}}$	M1, B1 for $\sqrt{116}$ seen
	$h = \frac{28}{\sqrt{116}} \approx 2.60$	A1
16	Interior angle of polygon A = $360^{\circ} - 135^{\circ} - 60^{\circ} = 165^{\circ}$	B1
	Let n be the number of sides of polygon A.	
	$\frac{(n-2)\times 180}{n} = 165$	M1
	180n - 360 = 165n	
	$n = \frac{360}{15} = 24$	A1

No.	Answers	Marks
17	$P = \frac{k}{\sqrt{Q}}$	
	$\frac{k}{\sqrt{9}} + \frac{k}{\sqrt{16}} = 21$	M1
	$\frac{k}{3} + \frac{k}{4} = 21$	
	$\frac{7k}{12} = 21$ $7k = 252$	
	k = 36	
	$\frac{36}{\sqrt{Q}} = 100$	M1
	$Q = \left(\frac{36}{100}\right)^2 = 0.1296 \qquad [Accept \frac{81}{625}]$	A1
18(a)	Perimeter = $\frac{216}{360} \times 2 \times \pi \times 10 + 20$ $= 12\pi + 20$	M1 for $\frac{216}{360} \times 2 \times \pi \times 10$
(b)	$2\pi r = 12\pi$ $r = 6$	M1
	Height of the cone = $\sqrt{10^2 - 6^2} = 8$	M1
	Volume of the cone = $\frac{1}{3} \times \pi \times 6^2 \times 8$	M1
	= 301.59 ≈ 302	A1
19	AD = BC (opposite length of parallelogram)	B1
	$\angle EAD = \angle ADB = \angle DBC$ (alternate angle)	B1
	$\angle EDA = \angle EDP - \angle ADP$	B1 for using alternate angle
	$= \angle DPC - \angle DBC \text{ (alternate angle)}$ $= \angle PCB \text{ (exterior angle)}$	B1 for using exterior angle or other equivalent reason to conclude that $\angle EDA = \angle PCB$
	$\therefore \Delta BCP \equiv \Delta ADE \text{ (ASA)}$	A1 for ASA shown

No.	Answers	Marks
20(a) (i)	6, 12, 22, 36	B1
(ii)	$\frac{2n^2 + 4 = 2(n^2 + 2) \text{ is a multiple of 2 for all values of } n, \text{ hence it is an}}{\text{even number and not an odd number.}}$	B1
(b)	$2k^2-3$	B1
21	4x+5 $4x+11$	
	$\frac{4x+5}{x} = \frac{4x+11}{x+2}$	M1
	(4x+5)(x+2) = x(4x+11)	M1
	$4x^{2} + 13x + 10 = 4x^{2} + 11x$ $2x = -10$	
	x = -5	A1
22(a)	47	B1
(b)	20.5	B1
(c)	1. On average Team B scored more points than Team A as their median score was 53 which was higher than the median score of 47 achieved by Team A.	В1
	2. The interquartile range of Team B was higher than that of Team A which was 17.5. Hence the scores for Team B was more widely spread out.	B1
(d)	There is an outlier in the distribution scores of Team A which is significantly greater than the rest of the scores.	B1

No.	Answers	Marks
23(a)	(560 420 140 490 280 280	B1
(b)	$T = (1.25 2.50) \begin{pmatrix} 560 & 420 & 140 \\ 490 & 280 & 280 \end{pmatrix}$	
	=(1925 1225 875)	B1
(c)	The total cost of the small and large vegetarian pies	B1
24(a)	$\angle DOB = 68 \times 2 = 136^{\circ}$ (angle at centre = twice angle on circumference)	B1 for correct reasoning
	$\angle BCD = 180 - 68 = 112^{\circ}$ (angles in opposite segment)	B1 for correct reasoning
	$\angle ODC = 360 - 52 - 136 - 112 = 60^{\circ}$ (sum of angles in a quadrilateral is 360°)	B1
(b)	Area of the shaded segment $= \text{Area of sector } OCB - \text{Area of triangle } OCB$ $= \frac{76}{360} \times \pi \times 5^2 - \frac{1}{2} \times 5^2 \times \sin 76^0$ $= 4.451932$ $= 4.45 \text{ cm}^2$	M1 , M1 A1

No.	Answers	Marks
25	Curved surface of the small hemisphere	Service and the service of the servi
	$=2\pi(3.6)^2=25.92\pi \text{ cm}^2$	M1
	Curved surface area of the cylinder	M1
	$=2\pi(3.6)(6.5)=46.8\pi$ cm ²	
	Total surface area of the large hemisphere	
	$= 2\pi (5.4)^2 + \pi (5.4^2 - 3.6^2) = 74.52\pi \text{ cm}^2$	M1, M1
	=	1741 , 1711
	Total surface area of the solid	
	$25.92\pi + 46.8\pi + 74.52\pi = 462.56 \approx 463 \text{ cm}^2$	A1
26(a)	40	
26(a)	$\frac{40 - v}{0.5 - 2} = -6$	M1
	0.5 2	
	v = 31	A1
(b)		B1 for correct curve drawn
(0)	Distance (km)	from $t = 0$ to $t=0.5h$
	↑ i	
	100	B1 for correct curve drawn
	90	from $t = 0.5h$ to $t = 2h$
	80	B1 for values 10 and 63.25
	688	labelled correctly on the
	50	vertical axis
	40	
	30	
	10	
	$0 \xrightarrow{\downarrow} Time (h)$ 0.5	
	0.5	

Tampines Secondary School

Sec 4 Prelim Math Paper 2 2024 Marking Scheme

Total Marks: 90 v = follow through

No.	Answers	Marks
1a	$\frac{6(a+1)^3}{7b} \times \frac{28b}{9(a+1)}$	
	7b 9(a+1)	
	$=\frac{2(a+1)^2}{1}\times\frac{4}{3}$	
		B1 (for $(a+1)^2$ seen)
	$=\frac{8(a+1)^2}{3}$	
	3	B1 (for $\frac{8}{3}$ seen)
1bi	$x = a + \frac{bv^2}{k}$	
	$\frac{x-u+\frac{u}{k}}{k}$	
	$x=2+\frac{3(-4)^2}{5}=11.6$	B1
1bii		
1011	$x = a + \frac{bv^2}{k}$	
	· · · · · · · · · · · · · · · · · · ·	
	$x-a=\frac{bv^2}{k}$	
	$k(x-a) = bv^2$	M1 (elimination of fraction)
	$\frac{k(x-a)}{b} = v^2$	Wir (chimination of fraction)
	, <i>b</i>	
	$v = \pm \sqrt{\frac{k(x-a)}{b}}$	M1 (square root)
	, ,	A1 (± seen)
1 c	4x + 7y = -23 (1)	
	6x - 2y = 3 (2)	
	$(1) \times 3: 12x + 21y = -69 (3)$ $(2) \times 2: 12x - 4y = 6 (4)$	M1 (correct method to
	(3)-(4):25y=-75	eliminate one variable)
	y = -3	A 1
	x = -0.5	A1 A1
1d	$\frac{x^2-(x-y)(x+y)}{x^2-(x-y)(x+y)}$	
	(x+y)(x-3y)	M1
	$\int_{-\infty}^{\infty} x^2 - (x^2 - y^2)$	
	$=\frac{x^2-(x^2-y^2)}{(x+y)(x-3y)}$	
	$=\frac{y^2}{(x+y)(x-3y)}$	
	(x+y)(x-3y)	A1 (accept expanded
		denominator)
		11 marks

No.	Answers	Marks
2a	$1500 = \frac{25000 \times R \times \frac{9}{12}}{100}$	M1 (or equivalent)
	1500 = 100	A1
	R=8 Rate is 8%	
2b	\$1 = 26.77 THB	
	\$500 = 500 x 26.77 = 13385 THB Money left = 13385 - 10600 = 2785 THB	M1 (get remaining amount of money left in THB)
	$26.88 \text{ THB} = \$1$ $2785 \text{ THB} = \frac{2785}{\$103.61}$	
	$2785 \text{ THB} = \frac{2785}{26.88} = \103.61	A1 (nearest cent)
2c	Deposit = $\frac{15}{100} \times 2700 = \405 Total instalments = $68 \times 36 = \$2448$ Total paid = $405 + 2448 = \$2853$ Interest = $2853 - 2700 = \$153$	M1 (calculate both deposit & instalments)
	% required = $\frac{153}{2700} \times 100 = 5.67\% \ (5\frac{2}{3}\%)$	M1 (their interest √ ÷ cash price x 100) A1
2d	100% → \$180	
	$110\% \rightarrow \frac{110}{100} \times 180 = \198	M1 (find discounted price)
	75% → \$198	M1 (v from above discounted
	$100\% \Rightarrow \frac{100}{75} \times 198 = \264	price)
		10 marks

No.	Answers	Marks
3a	length of box = $3x+1-3-3 = (3x-5)cm$	B1 (Length & width)
	width of box = $x + 13 - 3 - 3 = (x + 7)cm$	
	height of box = $3cm$	
	volume = 3(3x-5)(x+7)	M1 v
	$930 = 3(3x^2 + 21x - 5x - 35)$	N/1 (armanais u. a/)
	$310 = 3x^2 + 16x - 35$	M1 (expansion √)
	$3x^2 + 16x - 345 = 0$	A1 (establish the equation)
3b	$-16+\sqrt{16^2-4(3)(-345)}$	B1
	$x = \frac{-16 \pm \sqrt{16^2 - 4(3)(-345)}}{2(3)}$	
	x = 8.38 or $x = -13.72$	B1 B1
3c	Length of box = $3(8.38) - 5 = 20.14$ cm	M1 (v find either length or
	Width = $8.38 + 7 = 15.38$ cm	width with Q3b value)
		()
	Length of SQ = $\sqrt{20.14^2 + 15.38^2} = 25.3 \text{ cm}$	M1 & A1 V
		10 marks

No.	Answers	Marks
4ai	$\overrightarrow{AB} = \overrightarrow{AO} + \overrightarrow{OB}$	
	$= \begin{pmatrix} -3 \\ -7 \end{pmatrix} + \begin{pmatrix} 13 \\ -8 \end{pmatrix}$	
	$= \begin{pmatrix} 10 \\ -15 \end{pmatrix}$	M1 an use length formula
	$ \begin{vmatrix} 10 \\ -15 \end{vmatrix} = \sqrt{10^2 + (-15)^2} = 18.0 $	M1 or use length formula A1
4aii	$\overrightarrow{BA} = 2\overrightarrow{AP}$	
	$\begin{pmatrix} -10 \\ 15 \end{pmatrix} = 2(\overrightarrow{AO} + \overrightarrow{OP})$	
	$ \begin{pmatrix} -5 \\ 7.5 \end{pmatrix} = \begin{pmatrix} -3 \\ -7 \end{pmatrix} + \overrightarrow{OP} $	M1
	$\overrightarrow{OP} = \begin{pmatrix} -2\\14.5 \end{pmatrix}$	
	P (-2, 14.5)	A1
4b(i)	$\overrightarrow{CP} = \frac{3}{4}\overrightarrow{CB}$	B1 for \overline{CB}
	$=\frac{3}{4}(-4\underline{a}+2\underline{b})$	
	$=-3\underline{a}+\frac{3}{2}\underline{b}$	B1
4b(ii)	$\overrightarrow{AP} = \overrightarrow{AC} + \overrightarrow{CP}$	
	$=2\underline{a}-3\underline{a}+\frac{3}{2}\underline{b}$	
	$=-\underline{a}+\frac{3}{2}\underline{b}$	B1
4b(iii)		B1 (or find \overrightarrow{PD})
	$\overrightarrow{AD} = -2\underline{a} + 3\underline{b}$ $\overrightarrow{AD} = 2(-\underline{a} + \frac{3}{2}\underline{b})$	M1 (express one vector as a scalar multiple of the other)
	$=2\overrightarrow{AP}$,
	\overrightarrow{AD} is a scalar multiple of \overrightarrow{AP} , AD and AP are parallel	A1
	with A as the common point.	
	: A, D and P lie on the same straight line.	
4b(iv)	AreaOCB: AreaCBD: AreaCPD	
	2:1	
	4:3	
	Answer: $\frac{8}{3}$	B1 11 marks

No.	Answers	Marks
5a	67 43 67 43 8 8	
	Bearing of B from $C = 180 - (90 - 33) = 123^{\circ}$	M1 A1
5b	$\frac{AB}{\sin(180 - 52 - 33)^o} = \frac{43}{\sin 33^o}$	M1
	AB = 78.65 = 78.7m(3sf)	A1
5c	$\cos \angle CDA = \frac{67^2 + 32^2 - 43^2}{2(67)(32)}$	M2
	$\angle CDA = 31.297 = 31.3^{\circ}(1dp)$	A1
5d	$\tan\theta = \frac{60}{67}$	M1
	$\theta = 41.84 = 41.8^{\circ}(1dp)$	A1 9 marks

No.	Answers The same of the same o	Marks
6a	$\angle OAT = \angle OBT = 90^{\circ} \text{ (radius } \bot \text{ tangent)}$ $\therefore \angle OAX = \angle TBX = 90^{\circ}$	B2 for the first 3 or all statements seen
İ	∠AXO = ∠BXT (common angle)	(B1 for one correct pair of angles with reason)
	$\angle AOX = \angle BTX$ (3 rd angle in triangle)	
	∴ ΔOAX and ΔTBX are similar.	
6bi	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$TB = \sqrt{13^2 - 12^2} = 5$	M1 (TB = 5 seen)
	$TA = TB = 5cm$ (tangents from external point) $\frac{OA}{5} = \frac{18}{12}$	M1 (form ratio to find OA oe)
	$ \begin{array}{ccc} 5 & 12 \\ OA = 7.5 \end{array} $	A1
6bii	$\frac{area \ \Delta TBX}{area \ \Delta OAX} = \left(\frac{12}{18}\right)^2 = \frac{4}{9}$	B1
	$\frac{area \Delta TBX}{area \text{ quad } OATB} = \frac{4}{5}$	A1
6biii	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	$\tan \angle AOX = \frac{18}{7.5}$	
	$\angle AOX = 67.38^{\circ}$ Reflex $\angle AOB = 360 - 67.38 = 292.62^{\circ}$	M1 (oe for ∠AOX)
	In radian, $\frac{292.62}{180} \times \pi = 5.11 rad$ (3sf)	M1 (conversion) A1
	180	10 marks

7a	2	B1
7b	Smooth curve through 9 correct points	B3
		Or (B2FT for 9 points correct)
		Or (B1FT for 7 or 8 points
		correct)
:		
7c	7	M1 tangent line at $x = 3$
,,,	Gradient value between 0.6 to 0.9 [exact value is $\frac{7}{9} = 0.7$]	A1
7d	16	
	$9-x-\frac{10}{x}=0$	
	$10-x-\frac{16}{x}=1$	
	y=1	
	x = [2.3 - 2.5] or $x = [6.5 - 6.7]$	
70(i)	1	A1 A1
7e(i)	$10 - x - \frac{16}{x} = mx - 1$ $10x - x^2 - 16 = mx^2 - x$	
	X 2 10 2	M1 [elimination of fraction]
	$10x - x^2 - 16 = mx^2 - x$	war [citimation of traction]
	$mx^2 + x^2 - 11x + 16 = 0$	
	$(m+1)x^2 - 11x + 16 = 0$	В1
7e(ii)	$\frac{1}{2}$	
, 0(11)		

8a(i)	48 g	<u> </u>		B1
04(1)	70 g		İ	
8a(ii)	51 – 45 or 51.5 – 45			B1 (for LQ or UQ)
ou(II)	= 6 g $= 6.5 g$			A1
8a(iii)	40 g			B1
0()				
8b	260 - 200 = 60			
	60 59 59			
	$\left \frac{60}{300} \times \frac{59}{299} \right = \frac{59}{1495}$			M1 A1 (accept 0.0395)
	300 255 1150			
8c(i)	1st batch of eggs: interquartile range = 6 g (6.5g)			
00(1)	2 nd batch of eggs: interquartile range = 10 g			B1
	Since 6 g < 10 g, the mass of the 1st batch varies less widely, hence			
	1	s more consistent.	•	-
	the mass a	, 111010		
8c(ii)	The mass of the top 25% varies more widely than the bottom 25%.			B1
00(11)				8 marks
			_	
9a	p = 0.2979 (4 dp) r = 11.03 (2 dp)			
ļ				
	s = 133.62 (2 dp)			B3 (for each answer)
9b	July National average electricity usage = 505 kWh			
	Current July usage = 289 kWh			
	Additional usage = $505 - 289 = 216 \text{ kWh}$			M1
	Additional amount = 216 x 0.2979 (rate) = \$64.3464 = \$64.35 Monthly cost (from air-con) must be < \$64.35 4 & 5 ticks model selected			M1
				3.61
				M1
	Model	monthy cost (\$)	LCC (\$)	
	B	$\frac{\text{monthly cost}(5)}{616 \div 12 = 51.33}$	$\frac{2749 + 616 \times 7 = 7061}{2749 + 616 \times 7 = 7061}$	M1 (monthly cost)
	C	$789 \div 12 = 65.75$	$1989 + 789 \times 7 = 7512$	M1 (LCC)
	D	$789 \div 12 = 05.75$ $552 \div 12 = 46$	$3499 + 552 \times 7 = 7363$	Calculated for BCDE or DE
	E	$594 \div 12 = 49.50$	$3305 + 594 \times 7 = 7463$	
	C	J74 · 12 - 47.00	J505 - 55 (A () () ()	
	Chen show	uld ont for Model D which	A1	
	Chen should opt for Model D which has the lowest monthly cost (<\$64.35) and the LCC is the second lowest among the four models.			
	(SOT.33) and the Dee is the second to treat among the rest			
	Estimated August bill = $1.09 \times (122.59 + 46) = 183.76			A1
				10 marks
				10 11941 113