	Class	Index No.
Candidate Name:		

FUHUA SECONDARY SCHOOL

Secondary Three Express

Mid-Year Examination 2018

3E

Fuhua Secondary Fuhua Secondary

MATHEMATICS

4048/01

Paper 1

10 May 2018 0755 – 0925 1 hour 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to 3 significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

PARENT'S SIGNATURE	FOR EXAMI	NER'S USE
	Units	
	Statements/Accuracy	/ 60
	Poor Presentation	

Setter: Mr Chen Hong Ming

Vetter:

Ms Winnifred Lim

This question paper consists of 9 printed pages including this page.

1	(a)	Express 1485 as the product of its prime factors.
	(b)	Find the smallest possible integer value of k such that $1485k$ is a perfect square.
	(c)	The lowest common multiple of 1485 and the number X is 5940. The highest common factor of 1485 and the number X is 45. Find the value of X .
		Answer (a)[1]
		(b) $k = \dots [1]$
		(c) $X = \dots [1]$
2	(a)	Solve the inequality $x-1 < 5-x \le 2x+17$.
		Answer (a)[2]
	(b)	Represent the solution on the number line below.

3 An equilateral triangle, a nonagon and an unknown regular polygon share a vertex A. The 3 shapes share a side with one another without overlapping. How many sides does the unknown regular polygon have?

Answer	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	sides	[3]
--------	--------------------------------------	-------	-----

4 The Mercedes taxi in Singapore has a fare structure as shown in the table below.

Fixed Boarding Fare	\$3.90
X7 : 11 T	\$0.30 for every 400 metres
Variable Fare	thereafter or part thereof

Billy only has \$14 in his wallet.

- (a) Form an inequality for distance (in kilometres) that Billy can afford to travel on the taxi.
- (b) Hence, find the maximum distance that Billy can travel on the taxi.

Answer	(a)	 	•••	 	 	•••	••		[1]
	<i>(</i> b)			 	 			km	[2]

- 5 A map of Singapore has a scale of 1: 200 000.
 - (a) The length of the Singapore River on the map is 1.6 cm.Calculate the actual length, in kilometres, of the Singapore River.
 - (b) The actual area of Gardens by the Bay is 1.01 km².
 Calculate the area on the map, in square centimetres, of Gardens by the Bay.

Answer	(a)	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	km [1
	(b)			m² [2

- 6 Without the use of a calculator and leaving your answers in standard form, evaluate
 - (a) $3.2 \times 10^{14} + 7.9 \times 10^{13}$,
 - **(b)** $1.2 \times 10^{-17} 1.9 \times 10^{-18}$,
 - (c) $(3\times10^{20})^3$.

Answer	(a)	[1]
	(b)	[1]
	(c)	[1]

7	The f	first four terms of a sequence are 5, 11, 17 and 23.	
	(a)	Write down the 8th term in the sequence.	
	(b)	Write down an expression for the general term of the sequence.	
	(c)	Is the number 591 a term in the sequence? Justify your answer.	
		Answer (a)	[1]
		(b)	[1]
(c).		······································	
	,,,,,,,,,,,,		[1]
8	(a) (b)	the diagram below, $ABCD$ is a parallelogram such that $BE : CD = 2:3$. Find the similar to ΔDFC . State clearly your reasons. Find (i) $\frac{Area \text{ of } \Delta BFE}{Area \text{ of } \Delta DFC}$.	
	7111011101		
	******		[2]
	•••••	(bi)	
		(bii)	

9		eriod of a pendulum, T seconds, is directly proportional to the square root of the um's length, L metres.
	(a)	Given that $T = 1.2s$ when $L = 0.36m$, form an equation connecting T and L .
	(b)	Find the percentage increase in T when L increases by 300%.
		Answer (a)[2]
		<i>(b)</i> [3]
10	candid light ye	is roughly 250 billion stars in our galaxy, the milky way. The nearest planet that is a rate for human habitation is in the star system of <i>Proxima Centauri</i> , approximately 12 cars away. Given that 1 light year is the distance that light travels in 1 year, and that the of light is 3.0×10^8 m/s,
	(a)	express 250 billion in standard form,
	(b)	calculate the distance from Earth to <i>Proxima Centauri</i> , giving your answer in standard form, correct to 2 significant figures.
	(c)	The fastest rocket can reach a speed of about 265 000 km/h. Calculate the number of years, correct to 2 significant figures, it would take to reach <i>Proxima Centauri</i> .
		Answer (a)[1]
		(b) m [2]
		(c)years [2]

11 The table below lists 5 of the E-Maths Paper 1 equations that Mr Chen wanted to test students to sketch for the Mid-Year Examinations.

Equation	Equation
A	$y=4\left(3^{-x}\right)$
В	xy = 100
С	3x-2y-5=0
D	$y = 10 - 3x^2$
E	$y = \pi (2 - x^2)^0$

On his way to print the questions, he dropped his answers and mixed up the 5 correct sketches with 4 more sketches that he prepared for the End-of-Year Examinations.

Examining the 9 sketches below, label the 5 sketches that match the equations above. [5]

7
PartnerInLearning
92

12 A, B and C are the points $(-1, 4)$, $(5, 7)$ and $(3, -4)$.		
	(a)	Find the length of AB .
		Answer (a)units [2]
	(b)	Hence, show that $\triangle ABC$ is a right-angled triangle.
Answ	er (b)	······································
	********	•••••••••••••••••••••••••••••••••••••••
		······
•••••		[2]
	(c)	State the angle in $\triangle ABC$ that is a right-angle.
		Answer (c) Angle[1]
13	Given	the line $2y+3x-4=0$ and the coordinate $P(-6, 7)$,
	(a)	Given also that the line intersects $y = 1$ at Q , find the gradient of PQ .
	(b)	Find the equation of a line that passes through P and $R(-1, 1)$.
	(c)	Find the area of triangle PQR.
		Answer (a)[3]
		<i>(b)</i> [3]
		(c)units ² [1]

14 (a) Express $x^2 - 6x + 5$ in the form $(x - h)^2 + k$.

Answer (a)......[2]

(b) State the line of symmetry.

(b)......[1]

(c) Using part (a), solve $x^2 - 6x + 5 = 0$

(c) $x = \dots$ or \dots [2]

(d) Hence, sketch $y = x^2 - 6x + 5$ on the axis below. Label clearly, the intercepts, and turning point.

(d)

[3]

End of Paper

This Page is Blank! (or issit?)

	Class	Index No.
Candidate Name:		

FUHUA SECONDARY SCHOOL

Secondary Three Express

3E

Mid-Year Examination 2018

Fuhua Secondary Fuhua Secondary

MATHEMATICS 4048/02

PAPER 2

Additional Materials: Answer Paper (6) Graph Paper (1)

DATE

8 May 2018

TIME

0755 - 0925

DURATION

1 hours 30 minutes

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all questions.

Write your answers on the separate writing paper provided.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 60.

PARENT'S SIGNATURE	FOR EXAM	IER'S USE	
	Units		
	Statements/Accuracy	/ 60	
	Poor Presentation	7 00	

This question paper consists of 4 printed pages including this page.

Setter:

Mr Chia Chun Teck

Vetter:

Miss Winnifred Lim/Mr Chen HM

Turn Over

- Given $-7 < 3x 1 \le x + 7$ and $-14 \le 7y \le 49$, and x and y are integers, find the smallest value of xy and the largest value of (2x + y)(2x y). [4]
- 2 (a) Simplify the fraction $\frac{2p-8p^3}{6p+3}$. [3]

(b) Given that
$$b = \sqrt{\frac{a(x^2 - 8)}{y}}$$
, express x in terms of a, b and y. [2]

- (c) Given that $\frac{x+3y}{5x-4y} = \frac{2}{3}$, find the ratio x : y. [2]
- 3 (a) Factorise completely $a^2 + 16b^2 8ab 2a + 8b$. [2]
 - (b) Solve the equation $\frac{1}{4x^2 4x + 1} + \frac{3}{2x 1} = 4$. [3]

Hence, without solving, deduce the solutions for the equation

$$\frac{1}{\left(a-1\right)^2} + \frac{3}{a-1} = 4.$$
 [2]

In the diagram below, PQRS is a square and PQX is an equilateral triangle.

The line XY bisects $\angle PXQ$ and $\angle YPQ = 15^{\circ}$.

(a) Prove that
$$\angle XPY = \angle SPY = 75^{\circ}$$
. [2]

- (b) Show that $\triangle XPY$ is congruent to $\triangle SPY$. [3]
- (c) Prove that $\triangle SPY$ is an isosceles triangle. [3]

FSS_3E_MYEEM2_2018

PartnerInLearning

Simplify $\sqrt[3]{27a^9b^{-3}} \times \frac{1}{9} \left(a^{-\frac{1}{2}} b^{\frac{1}{4}} \right)^{-2} \div (ab^0)$, expressing your answer in positive 5 (a)

> indices. [3]

- Given that $7^a = 3$ and $7^b = 8$, find the value of 7^{2b-3a} . **(b)** [2]
- Solve the following equations. (c)

(i)
$$9^{x+5} = \frac{1}{729}$$
 [2]

- $4^x \times 3^{2x} = 36$ (ii) [2]
- 6 Ken, Joshua and Muthu were running on a 400 m circular track. Ken started running from point O in an anti-clockwise direction with a speed of ν m/s. At the same time, Joshua and Muthu started running from point O, but in a clockwise direction with speeds (v+3) m/s and (v-4) m/s respectively.
 - Show that the time passed before Ken and Joshua meet each other on the track is (i) $\frac{400}{2\nu+3}$ seconds. [1]
 - (ii) Find, in terms of ν , the time passed before Ken and Muthu meet each other on the track. Leave your answer in simplest form. [1]
 - Given that Ken meets Muthu 24 seconds after passing Joshua, form an equation (iii) in terms of v and show that it simplifies to $6v^2 - 3v - 193 = 0$. [3]
 - Solve the equation $6v^2 3v 193 = 0$. (iv) [3]
 - Hence, find the time taken for Joshua to run one round around the track. **(v)** [2]
- 7 Mr Chen wants to order some popcorn holder cups for the upcoming Annual Speech Day. The popcorn cups are in the form of truncated cones that are 15 cm high, with base and top radii 7 cm and 10 cm respectively. A sample of the cup is shown below.

Calculate the volume of each popcorn cup.

[The volume of a cone is $\frac{1}{3}\pi r^2 h$.]

10 cm 15 cm 7 cm

FSS 3E MYEEM2 2018

Turn Over

[4]

4

8 Answer the whole of this question on a sheet of graph paper.

A pebble was thrown from the top of a cliff next to the sea.

The height, h metres, of the pebble above sea level t seconds after it is released can be modelled by the equation $h = 3(8 + 5t - t^2)$.

Some corresponding values of t and h are given in the table below.

t	0	1	2	3	4	5	6	7
h	24	36	42	42	36	24	6	p

[1] Calculate the value of p. (a) Using a scale of 2 cm to represent 1 second, draw a horizontal t-axis for $0 \le t \le 7$. (b) Using a scale of 2 cm to represent 10 metres, draw a vertical h-axis for $-20 \le h \le 50$. On your axes, plot the points given and join them with a smooth curve. [3] Use your graph to estimate the (c) maximum height of the pebble above sea level, [1] (i) length of time that the pebble was more than 32 m above sea level. [2] (ii) [1] (iii) time taken for the pebble to hit the water. By drawing a tangent, find the gradient of the curve at (4, 36). (d) [3] State the units of your answer.

End of Paper

"You may be disappointed if you fail, but you are doomed if you don't try."

Beverly Sills

FSS_3E_MYEEM2_2018

Qn	Solution	Marks
la	$1485 = 3^3 \times 5 \times 11$	B1
1b	$k = 3 \times 5 \times 11$	B1
	=165	
1c	$1485X = LCM \times HCF$	B1
	$X = \frac{5940 \times 45}{1485} = 180$	
2a	x-1 < 5-x	
	2x < 6	
	x < 3	
	$5 - x \le 2x + 17$	
	$-12 \le 3x$	
	$-4 \le x$	
	$-4 \le x < 3$	B2
2b		
	<u> </u>	D1
	+	B1
	_4 3	
3	Interior angle of equilateral triangle = 60°	
	Interior angle of nonagon = $\frac{(9-2)\times180}{9}$ = 140°	M1 (Nonagon)
	Interior angle of unknown polygon = 160° Exterior angle of unknown polygon = 20°	M1 (Int. of Unknown)
	Number of sides = $\frac{360}{20}$ = 18 sides.	A1
4a	Let d be the distance that Billy travels.	
	$3.90 + \frac{d}{0.4} \times 0.3 \le 14$	B1
4b	$3.90 + \frac{3d}{4} \le 14$	
	$15.6 + 3d \le 56$	
	$3d \le 40.4$	
	$d \le 13 \frac{7}{15} \approx 13.466$	M1
	Maximum distance = 13.2 km	A1

11 PartnerInLearning 102

5a	1cm : 200000cm	
	1cm: 2000m	
	1cm: 2km	Di
£1.	1.6cm : 3.2km	B1
5b	1cm : 2km 1cm ² : 4km ²	M1 (Sanara)
	0.25cm ² : 1km ²	M1 (Square)
	0.2525cm ² : 1.01km ²	A1
6a	$3.2 \times 10^{14} + 7.9 \times 10^{13}$	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
	$=3.2\times10^{14}+0.79\times10^{14}$	
	$=3.99\times10^{14}$	B1
6b	$1.2 \times 10^{-17} - 1.9 \times 10^{-18}$	
	$=1.2\times10^{-17}-0.19\times10^{-17}$	B1
	$=1.01\times10^{-17}$	
6c	$(3\times10^{20})^3$	
	$=27\times10^{60}$	B 1
	$=2.7\times10^{61}$	D 1
7a	5,11,17,23,29,35,41,47	
		D.
F1	Ans: 47	B1
7b	$T_n = 6n - 1$	B1
7c	$T_n = 591$	
	6n-1=591	
	6n = 592	
	$n = 98\frac{2}{3}$	
	3	
	No. Since n has to be a positive integer, 591 is not a term in the	DM1
8a	sequence.	
oa	B E A	
	F	
	$C \longrightarrow D$	
	$\angle FEB = \angle FCD$ (Alt Angles, BE//CD)	
	$\angle EFB = \angle CFD$ (Vertically Opposite Angles)	B2 (Reasons)
	$\therefore \Delta BFE$ is similar to ΔDFC (AA)	
8bi	Area of ABFE	
	Area of DDFC	
	$= \left(\frac{BE}{CD}\right)^2 = \frac{4}{9}$	B1
<u> </u>	(CD) 9	DI

01 ::	Avec of ABEC	
8bii	Area of ABEC	
	Area of DDFC	
	$= \frac{\frac{1}{2} \times BF \times h}{\frac{1}{2} \times DF \times h} = \frac{BF}{DF}$ (Triangles of common height)	
	$=\frac{2}{1}$ = $\frac{DF}{DF}$ (Triangles of common height)	
	$\frac{1}{2} \times DF \times h$	
	$=\frac{2}{3}$	B 1
9a	$T \propto \sqrt{L}$	
	$T = k\sqrt{L}$	
		M1 (Form Equation)
	$1.2 = k\sqrt{0.36}$	
	$k = \frac{1.2}{\sqrt{0.36}} = 2$	
		Al
	$T=2\sqrt{L}$	
9b	L increased by 300% to $4L$	M1 (New <i>L</i>)
	$T_f = 2\sqrt{4L} = 4\sqrt{L}$	N1 OI T
	$4\sqrt{L}-2\sqrt{L}$	M1 (New T)
	Percentage change = $\frac{4\sqrt{L} - 2\sqrt{L}}{2\sqrt{L}} \times 100\% = 100\%$	A1
10-	2.42	NI
10a	250 billion	
	$=250\times10^9$	
	$=2.50\times10^{11}$	B1
10b	$3\times10^8 m/s\times60s\times60 \text{min}\times24h\times365.25 days\times12 years$	M1 (Form expression)
	$=1.13607\times10^{17}m$	
	$\approx 1.1 \times 10^{17} m$	A1
10c	Time taken	
	$=\frac{1.13607\times10^{17}m}{}$	M1
	265000km/h	IVI I
	$= \frac{1.13607 \times 10^{17} m}{10^{17} m}$	
	$-2.65\times10^8m/h$	
	=428705660h	
	=17862730 days	
	= 48905.5 <i>years</i>	
	≈ 49000 years (2s.f.)	A1
11A	A	
	Equation A	B1
	Equation A	Bi
	<u> </u>	

13 PartnerinLearning 104

1.5		
11B	Equation B	B1
11C		
	Equation C	B 1
11D		
	Equation <u>D</u>	B1
11E		
	Equation <u>E</u>	B1
12a	$ AB = \sqrt{(5-(-1))^2 + (7-4)^2}$	M1
	$=\sqrt{6^2+3^2}$	
	$=3\sqrt{5}units$	
	= 6.7082	
	≈ 6.7 lunits	A1
12b	$ BC = \sqrt{(5-3)^2 + (7-(-4))^2}$	
	$= \sqrt{2^2 + 11^2} = 5\sqrt{5}units$	M1 (Find BC)
	$ AC = \sqrt{(-1-3)^2 + (4-(-4))^2}$	
	$=\sqrt{4^2+8^2}=4\sqrt{5}units$	M1 (Find AC)
	$ AC ^{2} + AB ^{2} = (3\sqrt{5})^{2} + (4\sqrt{5})^{2} = (5\sqrt{5})^{2} = BC ^{2}$	()
	∴ ∆ABC is a right-angled triangle	
American de Carrer de Carr	(Converse of Pythagoras Thm)	A1 (Reason)
12c	Angle BAC is the right angle.	B1

14 PartnerInLearning 105

13a	When $y = 1$	
	2y+3x-4=0	
	2(1) + 3x - 4 = 0	1
	3x = 2	
	$x=\frac{2}{3}$	M1 (Find x)
		Wif (I max)
	$Q\left(\frac{2}{3},1\right)$	
	7-1	M1 (Gradient Formula)
	$m_{PQ} = \frac{7-1}{-6-\frac{2}{3}}$,
	$=-rac{9}{10}$	A1
13b	$m_{PR} = \frac{7 - 1}{-6 - (-1)}$	
	$=-\frac{6}{5}$	M1 (Tim 1)
		M1 (Find m)
	Subst (-6, 7) and $m = -1.2$ in $y = mx + c$	
	$7 = -\frac{6}{5}(-6) + c$	
	2 1	M1 (Find c)
	$c = -\frac{1}{5}$	Wir (rind c)
	$y = -\frac{6}{5}x - \frac{1}{5}$	A1
	5 5	·
13c	Area = $\frac{1}{2} \times (7-1) \times \left(1 + \frac{2}{3}\right) = 5units^2$	B1
	2 (3)	
14a	$x^2 - 6x + 5$	
	$=x^2-6x+9-4$	
	$=(x-3)^2-4$	B2
14b	x=3	B1
14c	$(x-3)^2 = 4$	
	$x-3=\pm 2$	
	$x = 3 \pm 2 = 1,5$	B2 (Must use part (a))
14d		3,40,000
1 144		B2
		- labels of critical
		points (Turning point,
		y-intercept, x-intercept)
		B1
		- Shape/Smoothness

15 PartnerInLearning 106

Solutions to MYE 2018 Paper 2

- Smallest value of xy = -8Largest value of (2x + y)(2x - y) = 64
- 2(a) $\frac{2p(1-2p)}{3}$
- **2(b)** $x = \pm \sqrt{\frac{b^2 y}{a} + 8}$
- **2(c)** x: y = 17: 7
- 3(a) (a-4b)(a-4b-2)
- 3(b) $x = \frac{3}{8} \text{ or } x = 1$ $a = \frac{3}{4} \text{ or } a = 2$
- 4(a) Proof
- **4(b)** $XP = PQ (PQX \text{ is equilateral } \Delta)$ = SP (PQRS is a square)

In $\triangle XPY$ and $\triangle SPY$,

XP = SP (proven above)

$$\angle XPY = \angle SPY = 75^{\circ}$$
 (proven in part a)

PY = PY (common side)

 ΔXPY is congruent to ΔSPY . (SAS)

4(c)
$$\angle PXY = \frac{60^{\circ}}{2}$$
 (line XY bisects $\angle PXQ$)
= 30°
 $\angle PSY = \angle PXY (\Delta XPY \equiv \Delta SPY)$
= 30°
 $\angle PYS = 180^{\circ} - 75^{\circ} - 30^{\circ} (\angle \text{sum of } \Delta)$
= 75°

 $\angle PYS = \angle SPY = 75^{\circ}$,... $\triangle SPY$ is an isosceles triangle. (proven)

FSS_3E_MYEEM2_2018

PartnerInLearning

6

5(a)
$$\frac{a^3}{3b^{\frac{3}{2}}}$$

$$5(b) \qquad 7^{2b-3a} = 2\frac{10}{27}$$

5(ci)
$$x = -8$$

5(cii)
$$x = 1$$

6(i) Time taken =
$$\frac{400}{v+3+v} = \left(\frac{400}{2v+3}\right)$$
 seconds

6(ii) Time taken =
$$\frac{400}{v - 4 + v} = \frac{400}{2v - 4}$$
$$= \left(\frac{200}{v - 2}\right) \text{seconds}$$

6(iii)
$$\left(\frac{200}{v-2}\right) - \left(\frac{400}{2v+3}\right) = 24$$

... $6v^2 - 3v - 193 = 0$ (shown)

6(iv)
$$v = -5.43$$
 (3 sig. fig.) or 5.93 (3 sig. fig.)

8(a)
$$p = -18$$

8(ci) maximum height of pebble
$$\approx 43$$
 m [Accept 42.5 m to 43 m]

8(cii) Length of time
$$\approx 3.8 \text{ s}$$
 [Accept 3.6 s to 4 s]

8(ciii) Time taken
$$\approx 6.3$$
 s [Accept 6.2 s to 6.4 s]

8(d) Gradient
$$\approx -9$$
 m/s [Accept -9.9 m/s to -8.1 m/s]

E Mathe MyE 2018 Paper 2

Q1.
$$-7 < 3x - 1 \le x + 7$$

 $-7 < 3x - 1 \le x + 7$
 $-6 < 3x$ $2x \le 8$
 $x > -2$ $x \le 4$
 $-14 \le 7y \le 49$
 $-2 \le y \le 7$ $< M1>$
Smallest value of $xy = (4)(-2)$
 $= -8 \times (B1)$
largest value of $(2x + y)(2x - y)$
 $= (argust value of (4x^2 - y^2)$

 $= 4(4)^2 - 0^2$

= 64

८B1>

$$02(a) \frac{2p - 8p^{3}}{6p + 3} = \frac{2p(1 - 4p^{2})}{3(2p + 1)} < m_{1} >$$

$$= \frac{2p(1 + 2p)(1 - 2p)}{3(2p + 1)} < m_{1} >$$

$$= \frac{2p(1 - 2p)}{3} < A_{1} >$$

(b)
$$b = \sqrt{\frac{a(x^2-8)}{y}}$$

$$b^2 = \frac{a(x^2-8)}{y} \quad \langle M1 \rangle$$

$$\frac{b^2y}{a} = x^2-8$$

$$x^2 = \frac{b^2y}{a} + 8$$

$$x = \pm \sqrt{\frac{b^2y}{a} + 8} \quad \langle A1 \rangle^{-1} \quad \text{must have } \pm 1$$

$$\frac{x+3y}{5x-4y} = \frac{2}{3}$$

$$3x + 9y = 10x - 8y$$

$$17y = 7x$$

$$\frac{17}{7} = \frac{x}{y}$$

$$\Rightarrow x: y = 17:7$$
(A1)

(b)
$$\frac{1}{4x^2-4x+1} + \frac{3}{2x-1} = 4$$

$$\frac{1}{(2x-1)^2} + \frac{3}{2x-1} = 4 \quad \langle m_1 \rangle - \text{Factorising fa}^2 - 4x + 1$$

$$1 + 3(2x-1) = 4(2x-1)^2$$

$$1 + 6x - 3 = 4(4x^2 - 4x + 1)$$

$$6x - 2 = 16x^2 - 16x + 4$$

$$16x^2 - 22x + 6 = 0$$

$$8x^2 - 11x + 3 = 0 \quad \langle m_1 \rangle$$

$$(8x - 3)(x - 1) = 0$$

$$\frac{3}{4} = \frac{3}{8} \quad \text{or} \quad x = 1 \quad \langle A_1 \rangle$$

$$\frac{1}{(a-1)^2} + \frac{3}{a-1} = 4$$

By comparing: a = 2x

$$a = \frac{2(\frac{3}{8})}{4}$$
 or $a = 2$

$$\therefore a = \frac{3}{4} \quad \text{or} \quad a = 2 \not (m)$$

PartnerInLearning

Q4(a)
$$X\hat{P}Q = 60^{\circ}$$
 (: POX is equilation) \triangle)

$$\therefore LXPY = 60^{\circ} + 15^{\circ}$$

$$= 75^{\circ}$$

$$S\hat{P}Y = 90^{\circ} - 15^{\circ}$$
 (: PORS is a square) \Rightarrow

$$X\hat{P}Y = S\hat{P}Y = 75^{\circ}$$
 (proven)
$$= 75^{\circ}$$

$$X\hat{P}Y = 80^{\circ} + 15^{\circ}$$

$$= 75^{\circ}$$

$$X\hat{P}Y = 80^{\circ} + 15^{\circ}$$

$$= 75^{\circ}$$
(b) $XP = PQ$ (: POX is equilateral \triangle)
$$= 5P$$
 (: PORS is a square) \Rightarrow

$$XP = 5P$$
In $\triangle XPY$ and $\triangle SPY$,
$$XP = 5P$$
 (proven above) \Rightarrow

$$X\hat{P}Y = 5\hat{P}Y = 75^{\circ}$$
 (proven above) \Rightarrow

$$X\hat{P}Y = 5\hat{P}Y = 75^{\circ}$$
 (proven above) \Rightarrow

$$X\hat{P}Y = 80^{\circ}$$
 (proven above) \Rightarrow

$$X\hat{P}Y = 80^{\circ}$$
 (formore 57de) \Rightarrow

$$XPY = 40^{\circ}$$
 (formore 57de) \Rightarrow

$$XPY = 40^{\circ}$$
 (line XY bistets $\angle PXO$) \Rightarrow

$$XPY = 80^{\circ}$$
 (line XY bistets $\angle PXO$) \Rightarrow

$$XPY = 9\hat{P}Y$$
 (: $\triangle XPY = \triangle PY$) \Rightarrow

$$XPY = 80^{\circ}$$
 (III)
$$= 30^{\circ}$$

$$P\hat{Y}S = 180^{\circ} - 75^{\circ} - 30^{\circ}$$
 (4 5 500 of \triangle)
$$= 75^{\circ}$$

$$P\hat{Y}S = 5\hat{P}Y = 75^{\circ}$$
, $\therefore \triangle SPY$ is an isoscales triangle. (proven)

$$Q5(a) \quad \sqrt[3]{27} \, a^9 b^{-3} \times \frac{1}{9} \left(a^{\frac{1}{2}} b^{\frac{4}{2}} \right)^{-2} + (ab^{\circ})$$

$$= 3a^3 b^{-1} \times \frac{1}{9} \left(ab^{-\frac{1}{2}} \right) + a \quad \langle m^2 \rangle \qquad \frac{3a^3 b^{-1}}{\frac{1}{9} \left(ab^{-\frac{1}{2}} \right) + a}$$

$$= \frac{1}{3} a^3 b^{-\frac{3}{2}}$$

$$= \frac{a^3}{3b^{\frac{3}{2}}} \qquad \langle A1 \rangle$$

(b) Given
$$7^a = 3$$
, $7^b = 8$

$$7^{2b-3a} = \frac{7^{2b}}{7^{3a}}$$

$$= \frac{(7^{b})^{2}}{(7^{9})^{3}}$$

$$= \frac{8^{2}}{3^{3}}$$

$$= \frac{2^{10}}{27}$$
(A1)

(i) (i)
$$q^{3+5} = \frac{1}{729}$$

 $q^{3+5} = q^{-3}$ (mi)

Comparing:
$$\chi + 5 = -3$$

 $\chi = -8 + \langle A1 \rangle$

(ii)
$$4^{x} \times 3^{2x} = 36$$

$$4^{x} \times 9^{x} = 36$$

$$36^{x} = 36$$

$$\frac{1}{3} \times 3^{2x} = 36$$

$$6^{x} = 6^{x} = 6^{x}$$

<6>

Q6(i) Time passed =
$$\frac{400}{V+3+V}$$
 (A1)
$$= \left(\frac{400}{2V+3}\right) \text{ seconds (shown)}$$
AF

(ii) Time passed =
$$\frac{400}{V-4+V}$$

$$= \frac{400}{2V-4}$$

$$= \left(\frac{200}{V-2}\right) \text{ seconds} \quad \langle B1 \rangle \text{ need to simplify!}$$

(iii)
$$\frac{200}{V-2} - \frac{400}{2V+3} = 24 \quad \langle M1 \rangle$$

$$200(2V+3) - 400(V-2) = 24(V-2)(2V+3) \land \langle M1 \rangle$$

$$408V + 600 - 408V + 800 = 24(2V^2 - V - 6) \qquad \langle M1 \rangle$$

$$140V = 24(2V^2 - V - 6)$$

$$175 = 3(2V^2 - V - 6)$$

$$175 = 6V^2 - 3V - 18 \qquad \langle A1 \rangle$$

$$\frac{6v^2 - 3v - 193}{6v^2 - 3v - 193} = 0 \quad (Shown)_{\#}$$

(iv)
$$V = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(6)(-193)}}{2(6)}$$

$$V = \frac{3 \pm \sqrt{4641}}{12}$$

(v) Time taken by Joshua =
$$\frac{400}{5.927043777+3}$$
 (:, v>0) (mi)
= $\frac{44.80751588}{44.18 s}$ (3 sig.fig.) (A1)
More papers at www.testpapersfree.com

Q7. Using similar triangles.

$$\frac{h}{h+15} = \frac{7}{10} \langle m1 \rangle$$

$$10h = 7h + 105$$

$$3h = 105$$

$$h = 35 \langle m1 \rangle$$

Volume of each popcom cup

$$= \frac{1}{3}\pi(10)^{2}(35+15) - \frac{1}{3}\pi(7)^{2}(35) \quad < m_{1}$$

08.
$$h = 3(8+5t-t^2)$$

(a) When
$$t=7$$
, $p=3(8+5(7)-7^2)$

$$\frac{p=-18}{8}$$
(81>

(ii) Length of time
$$\approx 4.4 - 0.6$$
 $\approx 3.8 \text{ s}$ Ai> \[Accept 3.6 s -> 4 s\]

(d) (3.45) and (6.18) lies on tangent drawn.

Gradient of curve
$$\approx \frac{45-18}{3-6}$$