			
NAME	NO.	CLASS	

NORTHLAND SECONDARY SCHOOL PRELIMINARY EXAMINATION Secondary 4 Express / 5 Normal Academic

ADDITIONAL MATHEMATICS

4049/02

Paper 2

28 August 2024

2 hours 15 minutes

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

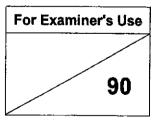
Write your class, index number and name in the spaces at the top of this page.

Write in dark blue or black pen.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.


Give non-exact numerical answers correct to 3 significant figures, or 1 decimal place in the case of angles in degrees, unless a different level of accuracy is specified in the question.

The use of an approved scientific calculator is expected, where appropriate.

You are reminded of the need for clear presentation in your answers.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 90.

This document consists of 19 printed pages and 1 blank page.

Turn over

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial Expansion

$$(a+b)^n = a^n + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^2 + \dots + \binom{n}{r}a^{n-r}b^r + \dots + b^n,$$

where n is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)...(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\cos ec^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for $\triangle ABC$

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}bc \sin A$$

1 Express $\frac{1-8x-3x^2}{(x-1)(2x^2+3)}$ in partial fractions.

[5]

2 (a) Find the smallest integer c for which the line y = 7x + c intersects the curve $y = 2x^2 - 4$ at two distinct points. [4]

(b) Find the range of values of k for which the curve $y = kx^2 + 2(2k-5)x + 9k$ lies below the x-axis. [4]

3 (a) Prove the identity $\frac{1-\cos x}{\sin x - \cos \cot x} = \tan x$.

[4]

(b) Hence solve the equation
$$\frac{1-\cos 2x}{\sin 2x - \cos \sec 2x + \cot 2x} = -3 \text{ for } 0^{\circ} < x < 180^{\circ}.$$
 [3]

(c) Show that there are no solutions to the equation
$$\frac{1-\cos x}{\sin x - \cos ec \ x + \cot x} = \tan 2x \text{ for }$$

$$0^{\circ} < x < 180^{\circ}.$$

4 (a) The equation $\log_2 x + \log_8 x = \log_4 2$ has the solution $x = 2^m$. Find the value of m.

[4]

(b) Sketch the graph of $y = \log_3 x$.

(c) Explain why the equation $\log_5(2x-11)-\log_5(x-4)=1$ has no real solutions.

[4]

5 (a) The function f is defined by $f(x) = e^{x^2+x}$ where x > 0. Explain, with working, whether f is an increasing or a decreasing function. [3]

- **(b)** The equation of a curve is $y = \frac{x^2}{x+3}$.
 - (i) Find an expression for $\frac{dy}{dx}$ and obtain the coordinates of the stationary points of the curve. [5]

(ii) Find an expression for $\frac{d^2y}{dx^2}$ and hence determine the nature of these stationary points. [3]

- 6 The points P and Q both lie on a circle and have coordinates (2, 7) and (-6, 1) respectively. The line with equation y+2x+4=0 is a normal to the circle.
 - (a) Find the equation of the perpendicular bisector of PQ.

[4]

(b) Find the equation of the circle.

[5]

(c) Find the exact value of the coordinates of the point on the circle which is furthest from the y-axis. [2]

[4]

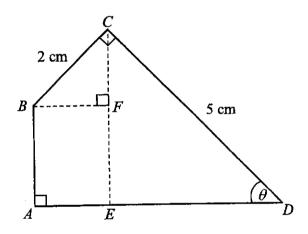
- A particle moves in a straight line, such that its velocity, v m/s, t seconds after passing a fixed point O, is given by $v = -0.3(4-t)^2 + 1.2$.
 - (a) Find the acceleration of the particle when it first comes to instantaneous rest.

After 1 second, its displacement, s m, is 2.5 m from O.

(b) Find the initial displacement of the particle.

[3]

(c) Explain clearly why the total distance travelled by the particle in the interval t = 0 to t = 7 is **not** obtained by finding the value of s when t = 7. [2]


(d) Find the total distance travelled by the particle in the interval t = 0 to t = 7.

[3]

[3]

8 (a) On the same axes, sketch, for $0 \le x \le 2\pi$, the graphs of $y = \sin 2x$ and $y = 1 - 3\cos x$. [3]

(b)

The diagram shows a quadrilateral in which CFE and AED are straight lines. BC = 2 cm and CD = 5 cm. Angle BCD =angle BFC =angle $BAE = 90^{\circ}$. Angle $CDE = \theta$, where θ is an angle in degree.

(i) Show that the perimeter of the quadrilateral is $3\cos\theta + 7\sin\theta + 7$.

(ii) Express $3\cos\theta + 7\sin\theta$ in the form $R\cos(\theta - \alpha)$, where R > 0 and α is acute. [3]

The perimeter of the quadrilateral is 13 cm.

(iii) Find the angle θ and hence find the total area of the quadrilateral.

[3]

9 (a) Express $\frac{3x}{3x+1}$ in the form $a + \frac{b}{3x+1}$ where a and b are constants, and hence find $\int \frac{3x}{3x+1} dx$.

(b) Given that $y = x \ln(3x+1)$, find an expression for $\frac{dy}{dx}$. [3]

(c) Using the results from parts (a) and (b), show that $\int_0^4 \ln(3x+1) dx = a \ln 13 + b$, where a and b are constants to be found. [5]

BLANK PAGE

	Mark Scheme for 2024 S4	E5N Add Mat	h Prelim Paper 2
1	$\frac{1-8x-3x^2}{(x-1)(2x^2+3)} = \frac{A}{x-1} + \frac{Bx+C}{2x^2+3}$	M1	Realising the form of the partial fractions
	$1 - 8x - 3x^2 = A(2x^2 + 3) + (x - 1)(Bx + C)$	M1	Realising the need to eliminate denominator
	When $x = 1$, $1 - 8(1) - 3(1)^2 = A[2(1)^2 + 3]$		
	$-10 = 5A \rightarrow A = -2$		
	When $x = 0$, $1 = -2[2(0)^2 + 3] + (0-1)(C)$		
	$1 = -6 - C \rightarrow C = -7$		
	When $x = 2$, $1 - 8(2) - 3(2)^2 = -2[2(2)^2 + 3] + [2B - 7]$		
	$-27 = -22 + 2B - 7 \rightarrow B = 1$		
	$\frac{-2}{x-1} + \frac{x-7}{2x^2+3}$	A3, 2, 1	-1 for each error inc. final answer
			5
2a	$2x^2 - 7x - 4 - c = 0$	M1	Eliminates y or x
	$b^2 - 4ac = (-7)^2 - 4(2)(-4-c)$	M1	Uses the discriminant
	49 + 32 + 8c > 0		
	c>-10.125	A1	Accept $c > -\frac{81}{8}$
	smallest integer $c = -10$	A1	8
2b	$y = kx^2 + 2(2k - 5)x + 9k$		
	$b^2 - 4ac = (4k - 10)^2 - 4(k)(9k)$	M1	Uses the discriminant
	$16k^2 - 80k + 100 - 36k^2 < 0$		
	$-20k^2 - 80k + 100 < 0 \rightarrow k^2 + 4k - 5 > 0$		
	(k+5)(k-1) > 0		
_	k < -5 or $k > 1$	A2	A1 for each
	$k < 0 \rightarrow k < -5$	B1	s.o.i. when $k > 1$ rejected
			8]
3a	$1-\cos x$		
· ·	$\sin x - \cos \operatorname{ec} x + \cot x$		
	$\frac{1-c}{s-\frac{1}{s}+\frac{1}{t}}$	B1	cosec and cot all correct
	$\frac{s - \frac{1}{s} + \frac{1}{t}}{\frac{1 - c}{s^2 - 1 + c}} \rightarrow \frac{s(1 - c)}{s^2 - 1 + c}$	M1	Correct algebra
	$ \frac{s(1-c)}{-c^2+c} $ $ \frac{s(1-c)}{(1-c)} = t $	M1	Uses $s^2 + c^2 = 1$
	$\frac{s(1-c)}{c(1-c)} = t$	A1	All correct
b	$\tan 2x = -3$	M1	Uses part (a) and replaces x with $2x$
	$\alpha = \tan^{-1}(3)$	M1	For finding basic angle
	$2x = 180^{\circ} - \alpha$, $360^{\circ} - \alpha$		
	$x = 54.2^{\circ}, 144.2^{\circ}$	A1	Accept 54.21 and 144.21
c	$t = \frac{2t}{1 - t^2}$		1

	3 24		
	$\frac{t - t^3 = 2t}{t^3 + t = 0 \to t(t^2 + 1) = 0}$		
		B1	Must include and then reject $t = 0$
	$t = 0$ (not valid for $0^{\circ} < x < 180^{\circ}$)	B1	Realises there is no solution to
ļ	or $t^2 = -1$ not possible. No solution		$t^2 = -1$
	Alternative Answer:		
	Correct sketch of $y = \tan x$ and $y = \tan 2x$	B1	
	No point of intersection for $0^{\circ} < x < 180^{\circ}$ and so	B1	
	no solution to the equation $\tan x = \tan 2x$		
			(Characa of boss
4a	$\log_2 x + \frac{\log_2 x}{\log_2 8} = \frac{\log_2 2}{\log_2 4}$	M1	Change of base
	$\log_2 x + \frac{\log_2 x}{3} = \frac{1}{2}$	B1	For $=\frac{1}{2}$,
	$\log_2 x + \frac{1}{3}\log_2 x = \frac{1}{2} \to \log_2 x = \frac{3}{8}$	M1	Making $\log_2 x$ the subject
	$x = 2^{\frac{3}{8}} \rightarrow m = \frac{3}{9}$	A1	
4b	0	B2	B1 for curvature of decreasing
7.0	y		gradient observed
			B1 for graph close to asymptote
	$\frac{1}{x}$		observed with x-intercept 1
4c	$\log_5(\frac{2x-11}{x-4}) = 1$	M1	Combine to single log
	$\frac{2x-11}{x-4} = 5$		
	$2x-11=5(x-4) \to x=3$	A1	
	If $x = 3$, $\log_5(2x-11) = \log_5(-5)$ or	M1	Substitute into log expression
	, , , ,		
<u></u>	$\log_5(x-4) = \log_5(-1)$	A1	Correct argument and conclusion
	Does not exist → No solutions	AI	[10]
-		Bl	
5a	$f'(x) = e^{x^2 + x}(2x + 1)$		Armios correctly
	Since $x > 0$, $2x + 1 > 0$ and $e^{x^2 + x} > 0$ $f'(x) > 0 \rightarrow \text{increasing}$	M1	Argues correctly
	$f'(x) > 0 \rightarrow increasing$	Al	$f'(x) > 0$ or $e^{x^2+x}(2x+1) > 0$ must b seen
5bi	200 200 -200 -2 + 6	B2, 1	B1 for unsimplified
201	$\frac{(x+3)(2x)-x^2(1)}{(x+3)^2} = \frac{x^2+6x}{(x+3)^2}$		_
	$(x+3)^2$ $(x+3)^2$	3.41	Sets to 0 and solves
	$\frac{x^2 + 6x}{(x+3)^2} = 0 \to x = 0, \ x = -6$	M1	
<u> </u>	(0, 0) and (-6, -12)	A1 A1	SR1 answers not in coordinate form
5bii		B1	
SUII	$\frac{10}{(x+3)^3}$		
	$\frac{18}{(x+3)^3}$ $x = 0 \to \frac{d^2y}{dx^2} = \frac{2}{3} > 0 \to \text{ minimum point}$	DB1	Correct $\frac{d^2y}{dx^2}$ value and conclusion

	$x = -6 \rightarrow \frac{d^2y}{dx^2} = -\frac{2}{3} < 0 \rightarrow \text{maximum point}$	DB1	Correct $\frac{d^2y}{dx^2}$ value and conclusion
6a	$m_{PQ} = \frac{7-1}{2-(-6)} = \frac{3}{4}$	B1	
	$M_{PQ} = (\frac{2+(-6)}{2}, \frac{7+1}{2}) = (-2, 4)$	B1	
	Gradient of Perpendicular = $-\frac{4}{3}$	M1	Uses $m_1 m_2 = -1$
	$y-4=-\frac{4}{3}(x-(-2))$		
	$y = -\frac{4}{3}x + \frac{4}{3}$	A1	
6b	$-\frac{4}{3}x + \frac{4}{3} = -2x - 4$	M1	Realises the need to use sim eqns
	x = -8	-	
	(-8,12)	Al	
 -	$\sqrt{(-8-2)^2+(12-7)^2}$	M1	Uses distance formula correctly with P or Q
	$\sqrt{125}$	A1	
	$(x+8)^2 + (y-12)^2 = 125$	B1√	√ for their radius and centre
6c	$(-8-\sqrt{125},12)$	B2√	B1 for each, √ for their radius and centre
		1 33 3 3 3	
7a	$v = -0.3(4-t)^2 + 1.2$		
	a = 0.6(4-t)	B1	
	When $v = 0 \to (4-t)^2 = 4$	M1	Sets to 0
	t = 2, t = 6	A1	
	$a = 0.6(4-2) = 1.2 \text{ m/s}^2$	A 1	
7b	$s = \int -0.3(4-t)^2 + 1.2 dt$	M1	Realises need to integrate
	$s = 0.1(4-t)^3 + 1.2t (+c)$	A1	
	When $t = 1$, $s = 2.5$, $c = -1.4 \rightarrow s = 0.1(4-t)^3 + 1.2t - 1.4$		Use $t = 1$ and $s = 3.9$ to find c
	When $t = 0$, $s = 5$ m	A1	
7c	Particle turned during $t = 0$ to $t = 7$	B1	
	When $t = 7$, it only gives distance from O	B1	
7d	When $t=2$, $s=1.8$ or When $t=6$, $s=5$ OR	M1	For finding displacement at either time it turns
·	distance = $\left \int_0^2 v dt \right = 3.2 \text{m}$ or $\int_2^6 v dt = 3.2 \text{m}$		
	When $t = 7$, $s = 4.3$ OR	M1	For finding displacement at ending time
	$\left \text{distance} = \left \int_{6}^{7} v dt \right = 0.7 \text{m} \right $		į
	distance = $(5-1.8) + (5-1.8) + (5-4.3) = 7.1 \text{ m}$	A1	

0		В3	B1 for two complete sine cycles
8a	y_{\uparrow}		with correct amplitude and
	4		intersections at x-axis
1			
			B1 for one negative cosine cycle
Ì	1	[B1 for cosine cycle with correct
	0		amplitude and intersections at axis
	An D		of rotation
	-2		
03:	AR OF CE Fair O 2000 A	B1	
8bi	$AB = CE - CF = 5\sin\theta - 2\cos\theta$	B1	
ļ	$AD = ED + BF = 5\cos\theta + 2\sin\theta$		Answer was given – so all working
	Perimeter = $5\sin\theta - 2\cos\theta + 5\cos\theta + 2\sin\theta + 7$	B1	must be correct
	$\rightarrow 3\cos\theta + 7\sin\theta + 7$	 	must be correct
8bii	$R = \sqrt{3^2 + 7^2} = \sqrt{58}$	B1	
		M1	For finding α
	$\tan \alpha = \frac{7}{3} \to \alpha = 66.8^{\circ}$		
	3	 	
	$\sqrt{58}\cos(\theta-66.8^{\circ})$	A1	
8biii			
оон	$\sqrt{58}\cos(\theta - 66.8^{\circ}) + 7 = 13$	 	
1	$\cos(\theta - 66.8^{\circ}) = \frac{6}{\sqrt{58}}$		
 	$\alpha = 38.0^{\circ}$	M1	For finding α
	$\theta - 66.8^{\circ} = -\alpha, \ \alpha$		
		A1	Accept 28.78
	$\theta = 28.8^{\circ}$, 104.8° (rejected)		Песері 20.70
	6.75 cm ²	A1	
9a	$\left \frac{3x}{3x+1} \right = 1 - \frac{1}{3x+1}$	B1	
ļ <u>.</u>		D2 2 1	-1 for each error in the integration -
-	$\int \frac{3x}{x^2} dx = x - \frac{1}{2} \ln(3x+1) + c$	B3, 2, 1	needs +c
	$\int 3x+1$ 3	N/1 D1	
9b	dy $\frac{1}{2}$ $\frac{1}{2}$	M1 B1	Uses product formula. B1 $\frac{1}{3x+1}$.
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \ln(3x+1) + x \times \frac{1}{3x+1} \times 3$	A1	A1 'x3'
-	3r		
	$= \ln(3x+1) + \frac{3x}{3x+1}$		
<u> </u>	3x+1	M1	Attempts to use the result of part (b)
9c	$\int \ln(3x+1) + \frac{3x}{3x+1} dx - \int \frac{3x}{3x+1} dx$	IVII	Attempts to use the result of part (b)
ļ	$\int \frac{\ln(3x+1)}{3x+1} \frac{1}{3x+1} \frac$		
	$\rightarrow x \ln(3x+1) - \int \frac{3x}{3x+1} dx$		
	* 3x+1		
1	on.		
	OR		
	1 2		
	$\ln(3x+1) = \frac{dy}{dx} - \frac{3x}{2}$		
	$\int_{0}^{\infty} dx = 3x + 1$		
	$\frac{1}{x}$		
	$\ln(3x+1) = \frac{dy}{dx} - \frac{3x}{3x+1}$ $\rightarrow x \ln(3x+1) - \int \frac{3x}{3x+1} dx$		
	7 5 7 7 1	}	

$x\ln(3x+1) - \int \frac{3x}{3x+1} \mathrm{d}x$	M1	Realises the need to use part (a)
$\rightarrow x \ln(3x+1) - \int 1 - \frac{1}{3x+1} \mathrm{d}x$		
$ [x \ln(3x+1)]_0^4 - [x - \frac{1}{3}\ln(3x+1)]_0^4 $	A1	All correct
$[4\ln 13 - 0] - \left[4 - \frac{1}{3}\ln 13\right]$	M1	Use definite integral formula on $x \ln(3x+1)$ or antiderivative from part (a)
$\frac{13}{3}\ln 13 - 4$	A1	For both values