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Mathematical Formulae

1. ALGEBRA
Quadratic Equation
For the equation ax? + bx + ¢ =0,
= —b+Vb% — 4ac
2a

Binomial expansion

n n n
(a+b)"=a"+(1)a”“'b+(2)a"‘2 b’ + ...+(,)a”"’b’+...+b",
n ' _ -
where 7 is a positive integer and (r) = r!(nn; 3= n(n—1) r'(n r+1)

2. TRIGONOMETRY

Identities
sinf4+cos?A=1
sec2A=1+tan’ 4
cosec2 A =1+ cot?2 4
sin{4 + By=sinA4 cos B+ cosA sinB
cos(4 + B) = cosA cos B ¥ sinA sinB
. _ tand+tanB
tan(d + B) = 1 £tand tanB
sin2A4 =2sinA4 cos4
cos2A4=cos’A—sin?A=2cos? 4—-1=1—-2sin4
tan 24 = 21204
1 —~tan“A4
Formulae for AABC
a b c

sind snB sinC
a?=51+c2-2bc cos A

i
A=§absinC

b9



The function £ is défined, for all values of x, by
fx)=x@0—x)".

Find the values:of x for which f is an increasing function. [4]
(@) Given that log, p=a, log,;¢ =5 and P 2°, [3]
q

express ¢ in terms of ¢ and b.

(b)  Onthe same axes, sketch the graphs of y =log, x and y =log, x. 2]



The siumber of bacteria in 2 culture is given by N =N, e**, where N, is the

number of bacteria at a particular time and N is the number of bacteria present
t hours later. The number of'bacteria.in the culture triples every 2 hours.

Calculate the value of the. constant k.

(3]
) Show that the roots of the equation x’ +{a —2)x = 2a are real for all
(a
values of a.
(b) Show that there are no values of b for which the curve
[4]

y=(b-3)x* —2bx+(b-2) is always positive.



"5 The vertices of a parallelogram ABCD are 4(5,0), B(~3,4), C(~2,6) and

D (p; q) respectively.
(i  Find the mid-point of AC. {1}
(i)  Find the coordinates of D. [2]

2
Hence show that 4BCD i1s a rectangle. 2l



The curve y =asmnbx + ¢ is defined for 0< x <27, where a is a negative

integer and b is a positive integer. Given that the amplitude of y is 4 and that

the period of y is 7,

(i - state the value of aand of 6. [2]
Given that the maximum value of y is 6,

(i) state the value of c, [1]
(fij) Sketch the graph of v, indicating the coordinates of any maximum or

minimum points.



(@)  Show that | x+5 |:= x—4 has no solution. [2]
® @  Sketchthe graph of the function y :l x*—2x—8| for —6<x<8,

labelling the turning point and the intercepts of the graph. [4]

(i) Hence, find the range of values of ¢ if the graph of v = ¢ intersects

the graph of y=|x> -2x-8 ! at more than 2 points. [2]



@ity

O0<e<9

®

(i)

Find the value of each of the constants « and b for which
sin2x (Stanx+ 2cotx )=a+bsin x.
Hence solve the equation sin4é (5 tan26+ 2cot 26 )= 7, stating the

principal values of 4.




A particle starts from rest at a fixed point O and moves in a straight line with
its acceleration, a m/s?, given by @ =5~ pz, where 7 seconds is the time since
leaving O, and p is a real constant.

‘When ¢ =3, its velocity is 12 m/s.

@@  Find the value of p. 2]
(ii) When does the particle change its direction of motion? [2]

(iii) Show that the particle passes O again when ¢ = 22.5. Hence find the total

distance travelled by the particle between £ =0 and ¢ = 22.5. 4]



10

E

A

The diagram shows a quadrilateral ABC'D whose wert ces lie on the

circumferencs of the circle. The point £ lies on CB produced such that AZ is a

tangent to the circle.

CF and AD are parallel.

i Show that angle BAE = angle CAD. [2]
(1) Show that tiangles BAE and DAC are similar. [2]
(ii) Giventhat AZ = BE, show that the line AT bisects the angle BCI. 2]

10



11 Thed1 agram shows part. of the curve y=x(5-x).

A
-~ ~_ y=x{5-x)
/—\ \\\
yd
N
W
/ .
O/ a 2a

The region I 1s bounded by the curve y=x ( 5—x } the x-axis and

the line x=a. .
The region N is bounded by the curve v=x{5—x }, the x-azis and the

lines x=a and x = 2a.
Given that the area of I 1s twice the area of M, find the value of @. [5]

Lh

11



12 nis giventhat y=(x-1)J/4x+3 .

. . dy :
(@  Express — inthe form -£X*4

dx V4x+3

(ii)  Given that y is increasing at-the rate of 2.5 units per second when

where p and g are integers. [3]

[2]

x = 3, find the rate of change of x at this instant.

12
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@

(ii)
(iii)

"
~3

4 cm

2]

O e R
5-'.4- x"\-“-..._f* '_r"j/

A piece of paper is cut into the shape PORST as shown in the
diagram. PQST is a rectangle with PO = 4 cm and QRS 1s an 1sosceles

triangle with OR = 8 cm.

Given that angle SOR = angle QSR =x radian, show that the area of the

14
paper, 4, is given by A =64cosx(1+sinx ). 4]
Find the value of x, in terms of 7z, for which 4 has a stationary value. [4]
Find the exact value of 4 and determine whether it is a maximum or a (3]
o/

minimum.
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Mathematical Formulae
1. ALGEBRA
Quadratic Equation
For the equation ax? + bx + ¢ =0,
= —bﬂ:JZ-—wé

Binomial expansion

(a+b)"=a"+('f)an~' b+(’21)a"‘2 B+ ... +('r’)a"-rbr+ D,

. n ! -D..(n—r+
where n is a positive integer and ( r') =3 (nn— i =nn=1) r,(n rt+1)

2. TRIGONOMETRY

Identities
sin® 4 +cos? A =1
sec?A=1+tan* 4
cosec?A=1+cot? 4
sin(4 £ B)=sin4 cos B+ cosA4 sinB
cos{4 = B)=cosA cosB ¥ sind sin B

~_ tand*tanB
tan(d £ B) = T T anB
sin24 =2sinAd cosd
cos24=cos? 4 —sinfA=2cos? A~1=1-2sin*4

2tanA

tan 24 = >
1 —tan“4

Formulae for AABC

a b ¢
snd sinB sinC

a?=b2+ 2 —2bc cos A

i .
—:,,:ab sin C



The curve y = f(x) is such that f '(x) =3 sinx + 5.
()  Explain why the curve y = f(x) has no stationary point.

(i) Given that the curve passes through the point (0, 5), find an expression
for f(x).

1
(i) Differentiate xe? with respect to x.

I .
(i) Integrate ¢? with respect to x.

. 4 1
(iii) Using results from part (i) and (ii) show that Ier' dx =4e’+4.
0

The equation of a curve is y = (x + k)*.

(i)  Show that the equation of the tangent to the curve where x = 2k is
y+ 3k = 6kx. .

This tangent meets the x-axis at P and the y-axis at Q.

The mid-point of PQ is M.

(iiy  Show that M lies on the curve y + 24x* = (.

(a) (i) Write down, and simplify, the expansion of (2 —p)’.

(i) Use the result from part (i) to find the expansion of (2 - 2x+-x7—_j

F

in ascending powers of x as far as the term in x°.

16
(b) (i) Write down the general term in the expansion of (xz - 216) .
X

(ii) Hence, or otherwise, evaluate the term independent of x in the

16
expansion of (\-2 1
’ 2x¢ )

[Turn over
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Given that k=322 , express k— kl—z in the form a + /2 ,whereaand b

are integers. 3]

() Prove that x + 1 is a factor of 2x> — 9% + x -+ 12. [2]

(i) Factorise 2x° —~9x” + x + 12 completely and hence solve the equation

2 9 +x+12=0. [4]

25
(ili) Express — . as the sum of three partial fractions. {4]
2x 9%  +x+12

A curve has an equation y = f(x), where f(x) = QC——J)_— forx #0.
X

()  Find an expression for f '(x) and obtain the coordinates of the stationary

points on the curve. [4]
(i) Showing full working, determine the nature of these stationary points.  [4]

The roots of the quadratic equation 8x* — 11x + 67 =0 are *+1 and B +1.

(i)  Find the values of &+ 8° and 3. [4]
It is also given that the roots of the quadratic equation 4x” — 9x + 16 = 0 are

a’and 7.

(i)  State the value of &’ + 5°. 1
(iii) Use all results from (i) and (ii) to deduce the value of o + f. 31

(iv) Form a quadratic equation, with integer coefficients, whose roots are

a and . [2]



8 cm

P 5cm

S T

In the figure, PORS is a rectangle of length 8 cm and breadth 5 ¢m and
ZRST = @ radians , where @ is acute.

(i) Express / cm, the perpendicular distance from Q to the line ST, in the
form a cos 6 + b sin 6, where a and b are constants.

[2]

(ii) Express /i in the form Rcos(6 — ), where R is a positive constant and

a is an acute angle in radians. [4]
(iii) Find the maximum value of / and the corresponding value of 6. [2]
(iv) Find the value of 6 for which 4= 7.5 cm. [3]

10 A circle passes through the points 4(4, 0) and B(0, 6). Its centre lies on the

liney=ux+2.
(1) Find the equation of the perpendicular bisector of 4B and hence show

that the centre of the circle is (— 1, 1). [6]
(ii) Find the equation of the circle. [3]
A second circle with equation x* + 3 + ax + by —23 =0, has the same
centre as the first circle.
(iii) Write down the value of g and of 4. (1]
(iv) Show that the second circle lies inside the first circle. 2]

[Turn over



11

The table shows the experimental values of x and y.

X 1.5 2.0 2.5 3 35 4.0

y 1.8 2.1 24 2.6 2.9 3.1

It is known that x and y are related by the equation y = kx", where k and n are

constants.

(i)  Using suitable variables, draw on graph paper, a straight line graph and

hence estimate the value of each of the constants &k and ».

(i) Using your values of k and n, calculate the value of x for which

xy=10.

(iii)

Explain how another straight line drawn on your diagram can lead to an

estimate of the value of x for which xy = 10. Draw this line.

- End of Paper -

[6]

(2]

(3]
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Mathematical Formulae

1. ALGEBRA
Quadratic Equation
For the equation ax? + bx + ¢ =0,
_ —b+vVb% ~4dac
2a

Binomial expansion
(a+b)"=a"+(';)a”" b+(g)aH 2R +(:)a""b"+ b

. n _nn-1D..@m-r+1
Crl(n—-r) rl

. . . n
. where 7 is a positive integer and ('r )

2. TRIGONOMETRY

Identities
sin? A+ cos?A=1
secZA=1+tan? 4
cosec?A=1+cot? 4
sin{4 + B)=sin4 cos B + cos4 sinB
cos{A + B)=cosA cosB FsindsinB -’

tand + tanB

tan(4 + B) = 1xtand tanB

sin2A4 =2sinA4 cosAd

cos24=cos’A—sinfA=2cos?4A—-1=1-2sin%4

2tan A4

tan 24 = >
1 —-tan“4

Formulae for AABC

a _ b ¢
sind sinB sinC

a?=b2+c?—2bccos A

i
A=-2-abs'mC



The function f is defined, for all values of x, by
f(x)=x(U-x)".

Find the values of x for which f is an increasing function.

(4]

Solutions
f)=x0-x)7°
=x(1-2x+x")
= x-2x" +x
£'(x)=1-4x +3x

= (3x—1)(x——l)

Given that f is an increasing function.

= (Bx-1)x=1)>0" "

1
x<- or x>1
J

(a) Giventhat log, p=a, log,,q=>5 and Loy,
q

express ¢ in terms of g and b.

(b)  On the same axes, sketch the graphs of y =log, x and y=log x.

(3]

(2]

Solutions b)

(a) log, p=a,
p = 4(' ,
Given P_ 2¢
q
4a
167

=2°

log,,q =10

g=16"

c=2a-4b

y=logiex




The number of bacteria in a culture is given by N = N, ¢*, where N, is the

number of bacteria at a particular time and N is the number of bacteria present
t hours later. The number of bacteria in the culture triples every 2 hours.

Calculate the value of the constant &

[3]
Solutions o
3N, =N,
k
N=N,e"' 3 o2
Whent=0, N =N, 2k=In3
= In3
Whent=2, N=3N, 2
s = (.5493
Whent=2, N=N, e : ~ 0.549
Show that the roots of the equation x* + (a —2)x = 2a are real for all 53]
(@) 3
values of a.
(b) Show that there are no values of b for which the curve
(4]
y={B-3)x* —2bx+(h—2) isalways positive.
Solutions () If y=B-3)x> —2bx+(p—2) is
(a) x*+(a-2)x—2a=0 always positive, then
Discriminant = ' b—3>0 = b>3
(a - 2)2 - 4(1)(— 2a) and discriminant <0
=a*—4aq+4+8q | (-2b) —4(b-3)b-2)<0
= & +4a+4 4b* —4{p> —5b+6)<0
= (@a+2) 4b” —4b% +20b—24 <0
Since (a+2) >0, 206 <24
The discriminant >0 k b< s
the roots are real for all
But from above, b > 3.... there are no
I val f . .\
real values ot a values of b for which y is always positive.




5 The vertices of a parallelogram ABCD are 4 (5,0), B(~3,4), C (-2, 6) and
D (p, q) respectively.

A (i) Find the mid-point of AC. 1]
it (i) Find the coordinates of D. 2]
. 2]

Hence show that ABCD is a rectangle.
Solutions (i)

i) Mid-point of AC = —
® pom Mid-point of BD = (P_zé ﬂfﬁj

(5-2 0+6) 2
L2772 Mid-point of BD = mid-point of AC
S (35) | 22323 g g
2 2 2 2
p:6 5 C]=2
Dis (6,2)

Given that ABCD is a parallelogram. Therefore AB=CD and AB// CD.

Gradient of 4B = 4-0
-3-5
_ ]
2
Gradient of CD = 2-0
6-5
=2

Gradient of 4B x gradient of CD = -1
= ABLCD.

= ABCD is arectangle.




The curve y = asinbx+c is defined for 0 < x <27, where a is a negative

integer and b is a positive integer. Given that the amplitude of y is 4 and that

the periodof y is 7,

(i)  state the value of @ and of b. 2]
Given that the maximum value of y is 6,

(i)  state the value of c, [
@iii)  Sketch the graph of y, indicating the coordinates of any maximum or

(3]

minimum points.

Solutions
(i) a is negative and amplitude is 4. Therefore a= —4.

Period of v is 7 . Therefore b = 2.

(i) y=asinbx+c
y=—4sin2x+c
When sin2x=-1,
6=—-4(-1)+c =c=2

(iii)
7
—n,6 L
4 ) (4m6
\ N\
\ /. \
\
A / \
/ \
\ / \
\ /
A /
\ /
\ /
A
3 \ 4 /4.:5 ; B
fi
\ /o i




(@)  Show that i x+5 | = x—4 has no solution. 2]
() ()  Sketch the graph of the function y={x*-2x—8| for —6<x<8,

labelling the turning point and the intercepts of the graph. (4]

(i) Hence, find the range of values of ¢ if the graph of y = c intersects

the graph of y={ x> —~2x—8| at more than 2 points. [2]

Solutions
(@ |x+5|=x-4

= x+5=x—4 or x+5=—(x—4)

NA x+5=—x+4
2x=-1

]

X=—=

2

But when xz—%, |x+5!:—%—4<0 NA

‘ x+5 ] =x—4 has no solution.

(b) y=|_\-2—2x—8[

= | (x—4)x+2)]
When x=-6, y=|(-10)-4)]
=40
When x=8, y=|(4X10)]|
=40
When x=0. v=|-§|

Line of symmetry : x=

When x=1, y=|(=3)3)|=9




(i) 0<c<9

Q) Find the value of each of the constants « and b for which
sin2x (Stanx+2cot x )=a+bsin” x. ’
(i)  Hence solve the equation sin46 (5tan26+2cot 26 )=7, stating the

principal values of 4.

B3]

3]

Solutions (i) Lot x=20
(i) sin2x(5tanx+2cotx ) 4+6sin220=7
= 6sin*20 =3
25inxcosx(55inx+2c‘ost sin22¢9:l
oS X sinx 2
= 10sin” x+4cos’ x sin29=i——l—

V2

Basic angle = 45°

10sin® x+4(l—sin2 x)
= 4+6sin” x

.. . _ond - 0
a=4 and b=6 Principal value: —90" <sin™ x <90

Principal values of 260 =-45°,45°

Principal values of & =-22.5,22.5




A particle starts from rest at a fixed point O and moves in a straight line with

its acceleration, @ m/s?, given by a=5— pt, where t seconds is the time since

leaving O, and p is a real constant.

When ¢ =3, its velocity is 12 m/s.

(i)  Find the value of p. 2]

(ii)  When does the particle change its direction of motion? 2]

(iii) Show that the particle passes O again when ¢ = 22.5. Hence find the total
distance travelled by the particle between 1 =0 and ¢ =22.5. [4]

Solutions (ii)

(i) a= 5—-pt When particle changes its direction, v =0

2

4
cv=si—-E 4o

2

The particle starts from rest

= when =0, v=0 ..¢=0
2
\,:5,_!12’_ T=0 (NA) or 5=—t
When 1=3, v=12 t=15s
5(3)—2’-:12
2
% _,
2
p=2
3
(ii1) 2 3
When 1=22.5, s=@25) 225
I 2 9
v=>5——
3 _
_ i r te —=>the particle passes pt O again whent=22.5s
2 9 N2 5
IV (F) N E
When =0, s=0 ..c=0 When 1 =15, s= R 187.5
52 7 Dist travelled = 187.5 x 2
2 9 =375m




10

\ {/,/
4

The diagram shows a quadrilateral ABCD whose vertices lie on the

circumference of the circle. The point E lies on CB produced such that AE is a

. tangent to the circle.

CE and AD are parallel.

(i) Show that angle BAFE = angle CAD. . 2]
(ii)  Show that triangles BAE and DAC are similar. [3]
(iii) Given that AB = BE, show that the line AC bisects the angle BCD. 2]
Solutions (i)

(i) £BAE = £ZBCA (tangent chord thm) Given that AB = BE.
= LCAD (alt Ls,CE/l AD) BAE is an isosceles triangle.

then DAC is also an isosceles A.
(i) ZABC + ZABE =180°( /s in A) £DCA=2ZCAD

=ZACB
. AC bisects the angle BCD.

ZABC + £CDA=180° ( Ls in opp seg)
ZABE = ZCDA
From (i) £BAE = /CAD
.. ABAE is similar to ADAC (AA)

10
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The diagram shows part of the curve y=x ( 5-x )

Y

A

N
M

-

~ y=x(5-x)

AN

& ~

2a

v
e

The region M is bounded by the curve y=x (5-x ), the x-axis and

the linex =a.

The region N is bounded by the curve y=x(5-x ), the x-axis and the

linesx=aand x = 2a.

Given that the area of N is twice the area of M, find the value of a.

Solutions
Area M= [ x(5-x)dx

= I: (Sx—xz)dx

DJ | Q")

Given N=2M
154> 7a° 5¢° &
— =22ty
2 3 2 3
= 5a2—2i
3
2 3 3
15a _7a —5a3+2a -0
2 3 3
2 3
5a _Sa -0
2 3
2[5 Sa
a |l ———1i=
2 3
a=0 (NA) or 5_a_§
3 2
3
a==
2

11




12

It is given that y =(x— l) Vax+3 .

px+gq

(i)  Express & in the form
dx 4x+3

where p and g are integers.

(i)  Given that y is increasing at the rate of 2.5 units per second when

x =3, find the rate of change of x at this instant.

B3]

[2]

Solutions

%_z(x—l)é@x* 373 (4)+ (ax+ 3): 1)

il

(4x-+3Y3[2(x = 1)+ (4 + 3)]

(4x+3)3(6x +1)

6x+1

Nax+3

d
ii) Given —=25
(ii) Given dt
& _& b
di dy dt
When x=3,
d_ —@.(2.5)
da 19
= (0.5096

~ 0.510 units/s

12




13 e o .

4 cm
L ~d_x x ) o
T
Becm
R

A piece of paper is cut into the shape PORST as shown in the
diagram. PQOST is a rectangle with PQ =4 cm and QRS is an isosceles
triangle with OR = 8 cm.

. (@)  Given that angle SOR = angle QSR = x radian, show that the area of the

. : (4]
paper, 4, 1s given by A= 64cosx( I+sihx )
(i)  Find the value of x, in terms of 7z, for which 4 has a stationary value. [4]
(iii)  Find the exact value of 4 and determine whether it is 2a maximum or a 3]
minimum.
Solutions (i) A=64cos x(l +sin x)
0] da . :
- B = 64 cosx(cosx)+ 64(1 + sin x)(—sin x)
Ao W = 64cos” x — 64sin’ x —64sinx
Q ix L
Sem \L/ A has stationary value = a4 =0
R dx
RW =8sinx and QW =8cosx 64cos’ x—64sin’ x —64sinx =0
Area of rect PQST = 4(16cos x) 64 — 64sin” x — 64sin’ x — 64sinx =0
Area of AQRS = %(1 6cos x)(8sin x) [—2sin"x—sinx=0
2sin*x+sinx—1=0
A fA=64 ¢+ 64 csin x
rea o cOs X cOsXsinXx (2sinx — 1) (sinx+1)= 0
= 64cosx(l +sinx) |
sinx=5 or sinx=-1(NA)
b4
x==
6




(i)  A4=64cosx(l+sinx)

A= 64cos—7£(l +sin —75)
6 6

e

= 483 cm?

=64 —128sin” x — 64sinx

&&

A
dxz

{,

=-256sinxcosx—64cosx

When x:z, d-f <0
6 dx”

A is maximum.
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Answers

{1 348,594 8 Proof
2 3 - 9(1) P 432
3 2<p<4 9@ii) | Proof
4(i) 1 N 2 5 9(iii) | 6 cm
x-3 x+1 (x+1)?
A e—3) 4 20+ 1)+ —— 10@) 1,72
x+1
5(i) x=-0.8 ; x=06(rej) 10(b) | Proof
5(@ii) | graph 10 4
3
6(i) graph 11(i1) 143
145
6(i1) 2y 11(1i1) 21
x="" 20
7(i) B=(3,0 12(i) | Proof
7(ii) | 45.5 units® 12(ii) | 0.24 m?'s
7(iii) | Triangles BCD and BED
7(1v) |y=10x-76
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ADDITIONAL MATHEMATICS Papér 2 (4047/02)

Marking Scheme
Qn Solution Marks Remarks
13) 3sinx+5=0
sinx = —% which is not possible as -1 <sinx < |
f7(x) #0. .. There is no stationary point MIAl
(i) y= j(3smx+5)dx
= —3cosx+5x+c MI1A1
x=0,y=5 = c¢c=8
cof(x)=—3cos x+5x+ 8 MI1AL1 | [6]
2 (i) dl L L
—tl xe® |=—xe?. +e? MI1Al
dx 2
L 1
(“) J.ez dx=2¢? +c
BlAI
4 1
(ii1) j%xezv a’x+[2@2 —2]=[4e2 —-O]
o= MiMI
RS ;
J-——xe2 dx=2e” +2
5 2
M1
4 ‘I_"_ )
-.[xe- dx =4e¢ +4 Al 8]
i Bl -
SAOR I Y
dx
Gradient of the tangent = 2(2k + k) = 6k Mi
When x = 2k, y = (k+2k)* = 9K Mi
Equation of the tangent is
y — 9k = 6k( x — 2k)
y+ 3k = 6kx MIAI
(i) P(é.o) and Q (0,-3k%) Mi
2
Mid-point R is 5,—£ Mi
4" 2
Substituting in y + 4x> =0,
2 2
_3k 24(5) -0
2 4
2 2
— 3k +_& =()
2 2
0 =20 MIAT | [9]

.. M lies on the curve y + 24x” =0




4(a)(). | (2-p)y’ =32—80p + 80p" —40p’ + 10p" —p’ MI1A2
Letp =21 %
.o e — — —
(ii) P 5 BI1
2 2 2
2-2x+ 2 | =32-80(2x — 2-)+80 (2x — — ) +..
) 2 2
, o =32-160x+360x> +...... MIAL
16 | 6—r 1 .
b)(i x? _—
(b)) (r)( ) ( 2x6) N
.. 16 5 yor 1 r_ 16 Y 32-2r
W (J(x) ( 2x6) (r)( 2) Ml
32-2r=0=r=4
16 * MIAL | [10]
Term independent of x = LI [ ) [10]
4N 2 4
S K =(B-2v2f=17-1242 - Bl
1 1 17+1242
L . =17+1242
o17-1202 (17-1242)17+1242) MIAI
k—k—lz=3—2ﬁ—(17+1zﬁ)=—14—14ﬁ MIAT |[5]
6() |2(-1Y - 91y’ = (-1)+12=0
~.X+ lisafactorof 2x° —9x* +x+ 12 . MIA1
(i) | 2¢ -9 +x+12 =(x+1) (2x* - 11x + 12) BI
= (x+1)(2x-3)(x-4) Al
B B 3
(x+DH2x-3)(x-4)=0 = x= -1, 5 or 4. A2
(i) 25 A B C
Let — 5 = + + Ml
2x"-9x" +x+12 x+1 2x-3 x-4
Evaluating A, Band C A=1,B=-4,C= | MIAI
2
D 4] Al | [10]
2x" =9x +x+12 x+1 2x-3 x—-4
(i) 2x(x —3)—(x—3) Mi
f(x): )2( )
pe
_x2—9
xz
x-:9=0:>x=ﬂ:3 Ml
2
The stationary points are (3, 0) and (— 3, — 12) MIAI




_ x2(2x) - (x* —9)(2x)

i |/ '™ M1
_18
X M1
f"(3)>0and f"(-3)<0
- (3, 0) Minimum point and (— 3, — 12) Maximum AlAl | (8]
point.
8D | 5.1. ﬁ3+1=% M1
5
3
a’+ ===
B 3 Al
(o +1)( [P+1) = 6—87 M1
a' Brat+ B 1=
s 67 5
o’ p = Y + i 1=38 Al
aff =2
i 2 9
a+f= Bl
© ,, :
a’+ [ :(a+ﬂ)(a2+ﬁ”—aﬁ) BI
5 9
(lll) _g_(a+13)(2'2)
MI1A1
(+ )= -2
2
(iV) | The quadratic equation is
x* +-§—x+2= 0
2 +5x+4=0 MIAL | [10]
9() h=5cos9+8sing BiBI
(D) | p= /52 182 =./89 B
a =tan—‘(§j =1.012197 MIAl
h= /89 cos(6-1.01) Al
(i) Max value of h =9.43
— Bl
f=1.01 v BI
V89 cos(6-1.012197) = 7.5 M1
8 =0.360 (accept 0.360 to 0.361) MIAL | [11]




10(i)

3

Mid-point of 4B is (2, 3) and Gradient of AB = — > MIMI
Equation of the perpendicular bisector is
2
y—- 3= —?;(x - 2)
3y=2x+5" MI1Al
1 =5+ = + is (—

Solvingy=x+2and 3y=2x+5,Centre is (— 1, 1) MIA]
(i) | Radius= (—1-4)} +(1—0) =26 M1

Equation of the circle is

G+ 1P+ (y— 1) =26 MIALI
(i) {a=2,b=-2 Bl

. (iv) Radius of the second circle = JI2#(=1)+23 =5
<26 .
. The second circle lies inside the first circle. MIAT | [12]

1) | y=k"

ley=nlgx+lgk

Plot Ig y against Ig x to obtain straight line graph M2A1

Use graph to find k = 1.43 and » = 0.563 MI1A2
(i) |y =143x"%

10 = 1.43 x'°%9

x=3.47 MI1Al
(iii) | xy=10

lgx+lgy=1 Bl

Plot this straight line using the same axes. MI1AT | [I1]







