	Class	Register No.
Candidate Name		

PEIRCE SECONDARY SCHOOL PRELIMINARY EXAMINATION 2021 SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

SCIENCE (CHEMISTRY, BIOLOGY)
Paper 1 Multiple Choice

5078/01 01 September 2021 1 hour

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, Index number on the Answer Sheet in the spaces provided.

There are **forty** questions in this paper. Answer **all** questions. For each question, there are four possible answers, **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate answer sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet.

A copy of the Data Sheet is printed on page 15.

A copy of the Periodic Table is printed on page 16.

The use of an approved scientific calculator is expected, where appropriate.

This paper consists of **16** printed pages and **0** blank page. Setter: Mr Brandon Sham (Chemistry) and Ms Tan Yin Chin (Biology)

Turn Over

A group of students want to investigate if the mass of manganese(IV) oxide will affect the speed of decomposition of hydrogen peroxide. Hydrogen peroxide decomposes to form water and oxygen gas.

Which of the following apparatus is **not** required for this investigation?

- A electronic balance
- B gas syringe
- C stopwatch
- **D** thermometer
- 2 To obtain sodium chloride from a mixture of sand and sodium chloride solution, which of the following should be carried out first?
 - A crystallisation
 - **B** distillation
 - C evaporation to dryness
 - **D** filtration
- 3 A white solid was dissolved in distilled water and the resultant solution is tested with several reagents. The table shows the observations for the different tests.

reagent	observation
aqueous sodium hydroxide, warm	moist red litmus paper turns blue
aqueous ammonia	no visible change
dilute nitric acid, aqueous silver	effervescence observed, no precipitate
nitrate	formed
dilute nitric acid, aqueous barium	effervescence observed, no precipitate
nitrate	formed

What is the identity of the white solid?

- A ammonium carbonate
- B ammonium sulfate
- C calcium chloride
- D sodium carbonate

4	Which of the following statements is true when liquid stearic acid is cooled to a	1
	temperature below its melting point?	

- A The distance between the particles increases.
- B The forces of attraction between particles become stronger.
- **C** The particles become more disorderly arranged.
- D The particles vibrate faster.

5 Which of the following statements is true about sub-atomic particles in an atom?

- A A neutron has a relative mass of 1.
- **B** All atoms have protons, neutrons and electrons.
- C An electron has a relative charge of 1+.
- **D** Protons are found orbiting around the nucleus.
- 6 Atoms W and X are isotopes.

W has 35 protons and 46 neutrons.

Which of the following shows the correct symbol for X?

Α	³⁵ X	В	46 35
С	⁷⁹ X	D	81 35

7 Atom E has an electronic configuration of 2.8.3.

Atom F has an electronic configuration of 2.6.

Which row correctly describes the compound formed between E and F?

	bonding	melting point
Α	covalent	low
В	covalent	high
С	ionic	low
D	ionic	high

8	Potassium dichromate	(VI	has a chemical	formula of K2Cr2O7
_	, ctacciaiii a.c.iiiciii.atc.		, mad a diremined.	

What is the charge of a dichromate(VI) ion?

- A 2-
- **B** 3+
- C 6+
- **D** 6-
- 9 Which of the following has the same number of moles as 16.0 g of oxygen gas?
 - A 12.0dm³ of hydrogen gas at room temperature and pressure
 - **B** 16.0dm³ of oxygen gas at room temperature and pressure
 - C 24.0dm³ of steam at 120°C and pressure of 1 atmosphere
 - D 40.0g of calcium
- 10 Which of the following is an example of an endothermic change?
 - A combustion
 - B dissolving ammonium nitrate in water
 - C dissolving concentrated sulfuric acid in water
 - **D** respiration

- 11 When hydrogen peroxide is added into acidified potassium manganate(VII), the colour of the solution changes from purple to colourless.
 - When hydrogen peroxide is added into aqueous potassium iodide, the colour of the solution changes from colouriess to brown.

What is the role of hydrogen peroxide in these reactions?

	reaction with acidified potassium manganate(VII)	reaction with potassium iodide
Α	oxidising agent	oxidising agent
В	oxidising agent	reducing agent
С	reducing agent	oxidising agent
D	reducing agent	reducing agent

- 12 Which statement about acids and bases is not correct?
 - A Acids do not contain hydroxide ions.
 - B An acidic solution has a pH value of less than 7 at 25°C.
 - C Basic oxides can be formed from metals reacting with oxygen.
 - D Soluble bases that dissolve in water and producing hydroxide ions are called alkalis.
- Which set of reagents is the most appropriate to prepare a pure, dry sample of copper(II) sulfate?
 - A copper and dilute sulfuric acid
 - B copper(II) carbonate and dilute sulfuric acid
 - copper(II) chloride solution and sodium sulfate solution
 - D copper(II) oxide and sodium sulfate solution

- An atom of element J has 3 occupied electron shells and 5 valence electrons. 14 What is element J?
 - Α arsenic
 - В indium
 - C phosphorus
 - D thallium
- Which of the following does not describe about elements in Groups I and VII? 15

	Group I	Group VII
A	alkali metals	halogens
В	boiling point decreases down the group	boiling point increases down the group
С	form covalent compounds	form ionic compounds only
D	react with cold water readily	exist as coloured substances

- Which of the following shows the chemical equation when chlorine water is added 16 into aqueous potassium bromide?
 - Α
 - $KBr(aq) + Cl(aq) \longrightarrow KCl(aq) + Br(aq)$ $2KBr(aq) + Cl_2(aq) \longrightarrow 2KCl(aq) + Br_2(aq)$ В
 - $KBr(aq) + Cl(l) \longrightarrow KCl(aq) + Br(l)$ C
 - $2KBr(aq) + Cl_2(l) \longrightarrow 2KCl(aq) + Br_2(l)$ D
- Which of the following will not produce a colour change? 17
 - Α copper + aqueous silver nitrate
 - В iron + aqueous copper(II) sulfate
 - magnesium + aqueous zinc chloride C
 - zinc + aqueous iron(III) sulfate D

- 18 Which of the following is **not** added into the blast furnace during the extraction of iron?
 - A coke
 - **B** haematite
 - C limestone
 - **D** quicklime
- 19 Which statement does not explain the importance of recycling metals?
 - A Metals are finite resources.
 - **B** Metals obtained from recycling are more useful.
 - C Recycling of metals uses less energy than mining and extracting.
 - **D** The extraction of ores causes pollution to the environment.
- 20 What is the approximate volume composition of dry air?

	percentage of nitrogen / %	percentage of oxygen / %	percentage of noble gases and carbon dioxide / %
Α	21	78	1
В	21	0.93	78
С	78	21	1
D	78	1	21

Data Sheet Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

(O)
Ξ
9
등
面
Ĕ
0
픙
<u> </u>
ŗ
읒
8
<u></u>
ď
9
ᆮ

	0	5 문	helium 4	우 ;	g Z	20	<u>ج</u>	\ \	argon	40	99	호	knypton i	86	22	2	xenon	2	ထိ	줃	redon	1				
	5			Ф 1		florine 10	2 2	: 2	chorine ar horize	35.5	83	മ്	bromine	8	જ	-	odine	/7.	8	₹	astati re	'			•	-
	IA			ω (0	axygen 16	2 4	2 0	sufur Sufur	32	ষ্ক	స్టి	selenium	ę.	8	<u>e</u>	tellurium	28	z	<u>~</u>	polonium	-	118	<u></u>	livermonium	1
	>			-	z	nitrogen 14	,	2 0	chosphorus	3	33	As	arsenic	75	₹	සු	antimony	122	x	எ	bismuth	509				
	1			ဖ	O	carbon 17	1 1	Ü	5 <u>8</u>	28	32	æ	germanium	ಣ	8	ي ا	#	£ 13	8	£	lead	207	7,	ĩ	llerovi.m	1
	=			ιn.	<u></u>	фалаг 1.1	- 6	2 7	aluminium	27	31	ලී	gaalium	70	49	<u>=</u>	majpu	115	€	F	thatturn	204				
			•								ଛ	Z,	ZIUC	92	48	ਲ	cadmium	112	8	운	mercury	201	112	ర్	copernicium	1
											82	ਟੋ	reddoo	94	47	Å	silver	108	79	Æ	gok	197	111	æ	roentgenium	ı
9											28	Z	nickel	නු	46	몬	palladium	9	28	깥	piatirum	195	110	ద	darmstadtium	
Group											27	ප	cobalt	29	45	듄	rhodium	103	11	<u></u>	Fridium	192	109	M	meltnerkum	I
		- I	hydrogen 1								26	ij	iron	20	44	2	ruthenium	101	76	ő	шпшво	190	108	£	hassium	1
				•							25	M'n	тапдалезе	8	43	ပ	technetium	e	22	Re	menium	186	107	띪	bohrium	J
				umber	8		Hass				24	ర	chromium	22	42	€	moiybdenum	96	74	M	tungsten	<u>\$</u>	106	S	seaborgium	J
			Key	(atomic) r	omic sym	กลพษ	ve atomic				23	>	vænædium	51	41	운	mioblum	8	73	, ca	tanfalum	181	105	2		_
				proton	atc	1	relan										,						104		œZ.	1
											24	တ်	scandium	45	33	; > -	yttnium	\$	12-25	lanthenoids			89 - 103	actinoids		
				4	æ	beryllium	5	7.	Mg	24	20	රී	calcium	6	38	റ്	stronllum	88	£	Ba	barlurc	137	88	æ	radium.	
	_			က	; ;	lihium	\		e l	23	5	. .	potassium	සි	37	2	rubidum	82	25	ű	caestum	133	87	ŭ	francium	ı

71	3	lutefium	175	103	ت	lawrencium	•	
2	웃	ytherbium	173	102	ž	robelium	•	
69	Ę	thuitium	169	101	₽	mendelevium	•	
89	ய்	erbicm	167	100	Ē	fermium	1	
19	운	holmium	165	66	₩.	einsternum	1	
99	δ	dysprosium	163	88	ರ	сайотит	-	
æ	2	(e:bl:,m	159	26	ă	berkelium	ı	
容	Ö	gadolinium	157	8	5	Curium	ŧ	Ċ
63	Ш	euroaium	152	98	Αm	amencium	1	
62	S	samarium	150	46	ď	plutonium	ı	
61	E.	promethium	: I	93	Ž	neplunium	ı	
99	S	reodym um	144	8	¬	uranium	238	
59	ፚ	praseodymium	141	91	e e	profactinium	231	
58	ڻ	cerium	5	06	<u></u>	Ihorium	232	
57	-	Balhanim	139	68	Ac	actinium	ı	

lanthanoids

actinoids

The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).

	 Class	Register No.
Candidate Name		

PEIRCE SECONDARY SCHOOL PRELIMINARY EXAMINATION 2021 SECONDARY 4 EXPRESS / 5 NORMAL (ACADEMIC)

SCIENCE (CHEMISTRY)
Paper 3

5076/03, 5078/03 24 August 2021 1 hour 15 minutes

Additional Materials: Nil

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number in the spaces provided at the top of this page. Write in dark blue or black pen. You may use a soft pencil for any diagrams, graphs or rough working.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units.

Section A [45 marks]

Answer all questions.

Write your answers in the spaces provided on the Question Paper.

Section B [20 marks]

Answer all questions.

Write your answers in the spaces provided on the Question Paper.

A copy of the Data Sheet is printed on page 14. A copy of the Periodic Table is printed on page 15.

The number of marks is given in brackets [] at the end of each question or part question.

	For Examiner's Use			
PARENT'S SIGNATURE	Section A			
	Section B			
	Total			

This document consists of 15 printed pages and 1 blank page.

Setter: Mr Brandon Sham

PartnerInLearning

Turn Over

Section A

Answer all questions in the spaces provided.

1 Use the list of substances to answer the questions.

argon

calcium hydroxide

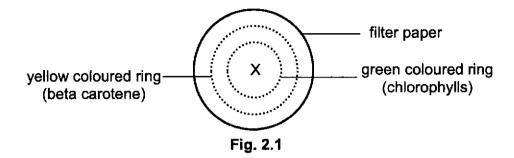
copper

helium

lead(II) oxide

magnesium oxide

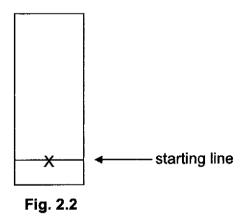
sodium hydroxide


steel

zinc

(a)	Which substance is used to neutralise acidity in soil to promote plant growt	h?
		[1]
(b)	Which two substances are used to make brass?	
		[1]
(c)	Which substance can react with both acids and alkalis to form salt and woonly?	ater
		[1]
(d)	Which substance is the main constituent of noble gases in clean, dry air?	
		[1]
(e)	Which substance melts over a range of temperatures?	
		[1]

[Turn Over


A drop of plant extract obtained from leaves was placed in the centre of a piece of round filter paper. A chromatogram was obtained as shown in Fig. 2.1.

(a) Using Fig. 2.1, state and explain which **substance** is more soluble in the solvent used.

[2]

- (b) The chromatogram was repeated again using a long piece of filter paper.
 - (i) On Fig. 2.2, draw the results of the chromatogram that you will expect to see. Label your diagram.

[1]

(ii) Explain why the starting line cannot be submerged into the solvent.

[1]

3 (a) Table 3.1 shows the information of some air pollutants and their sources. Fill in Table 3.1 with **one** source for each air pollutant.

Table 3.1

air pollutant	source
sulfur dioxide	
oxides of nitrogen	
carbon monoxide	

[3]

(b)	Describe the effects of sulfur dioxide on human and on the environment when it is emitted to the atmosphere.
	effect on human:
	effect on environment:
	[2]

(C)	(1)	form nitrogen dioxide.
		Write the chemical equation for this reaction.
		[1]
	(ii)	Explain why nitrogen monoxide is oxidised in this reaction.
		[1]
(d)		ough carbon dioxide is not considered as an air pollutant, a build-up of it in atmosphere can lead to global warming.
	elec	w the 'dot and cross' diagram to show the arrangement of the outer shell strons in carbon dioxide. oton numbers: C, 6; O, 8]

4 Fig. 4.1 describes some of the reactions of several substances.

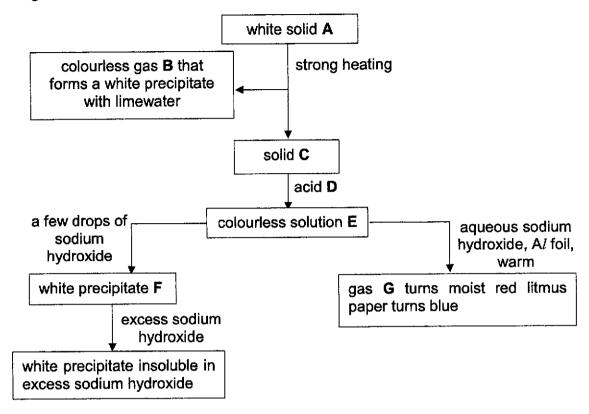


Fig. 4.1

(a) State the identities of A, B, C, D, E, F and G
--

A	
В	
С	
D	
E	
F	
G	[7]

(b)	Write a balanced chemical	equation,	with s	state	symbols,	for	any	one	of	the
	reactions in Fig. 4.1.									

[2]

[Turn Over

5 Fig. 5.1 shows different particulate models to represent different substances.

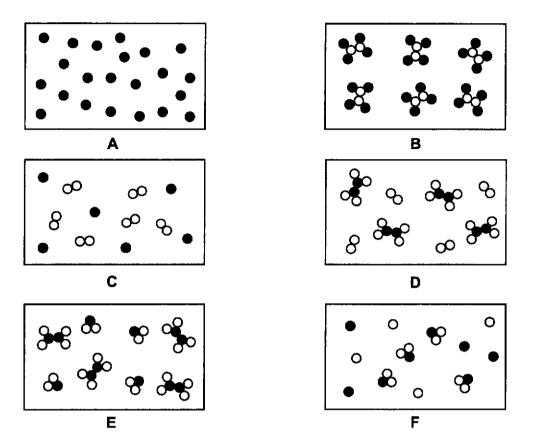


Fig 5.1

Fill in Table 5.1 with the appropriate letter(s) in each row to match the descriptions given.

Table 5.1

description	diagram
a compound	
an element	
a mixture of an element and a compound	
a mixture of two compounds	A

[4]

6

(a)		culate the concentration of this solution in mol/dm³. ative atomic masses: H, 1; O, 16; Na, 23]	
(b)	(i)	concentration = mol/dm³ Write the ionic equation for neutralisation.	[2
	(ii)	Hence, calculate the number of moles of ions required to compleneutralise 25.0 cm ³ of the above sodium hydroxide solution.	_ [1
(c)	Neu	number of moles = utralisation reaction is an example of an exothermic reaction.	[2
(-)		ine the term exothermic.	_ [1

(b)	Fill in Table 7.1 with the electronic configurations of atoms of lithium-7 and potassium-39.												
	Table 7.1												
		atom	number of electrons	electronic configuration									
		lithium-7	3										
	ро	tassium-39	19										
(c)	disti	lled water. L	Universal Indicator are adde	n added into one beaker each									
(c)		lled water. L		n added into one beaker each ion of any one of the metals lis									
(c)	disti	Write the chabove with	ithium and potassium are the	n added into one beaker each ion of any one of the metals list t required. v and one difference in									
(c)	disti	Write the chabove with	ithium and potassium are the nemical equation for the reacti water. State symbols are not and explain one similarity as for the reactions carried ou	n added into one beaker each ion of any one of the metals list t required. v and one difference in									
(c)	disti	Write the chabove with Describe observation similarity:	ithium and potassium are the nemical equation for the reacti water. State symbols are not and explain one similarity as for the reactions carried ou	n added into one beaker each ion of any one of the metals list t required. y and one difference in it in (c).									
(c)	disti	Write the chabove with Describe observation similarity:	nemical equation for the reacti water. State symbols are not and explain one similarity as for the reactions carried ou	n added into one beaker each ion of any one of the metals list t required. y and one difference in it in (c).									

Section B (20 marks)

Answer all questions from this section.

Write your answers in the spaces provided.

8 Some metals can be extracted from their oxides when heated with carbon. Table 8.1 shows the experimental results after heating 0.25 g of four different metal oxides with excess carbon for 10 minutes.

Table 8.1

metal oxide	volume of carbon dioxide produced / cm ³
calcium oxide	0
copper(II) oxide	32
iron(II) oxide	10
nickel(II) oxide	25

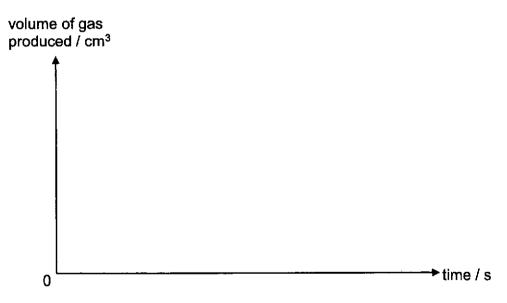
(a)		ng the information from Table 8.1, arrange the metals in decrea- ctivity.	asing
			[1]
(b)	(i)	Explain why no carbon dioxide is produced when calcium oxide is he with carbon.	eated
			[1]
	(ii)	Suggest a method to extract calcium from its ore.	
			[1]

(0)	(1)	shell electrons in calcium oxide. [Proton numbers: O, 8; Ca, 20]
		[2]
	(ii)	Explain why solid calcium oxide is unable to conduct electricity, but molten calcium oxide can conduct electricity.
		[2]
(d)		trical wiring are often made of pure copper because of its high electrical luctivity and high ductility.
	State	e one other physical property of copper.
		[1]
(e)		is another metal that is widely used in daily life. However, iron will undergoing over time.
	(i)	State a method which can prevent iron from rusting.
		[1]
	(ii)	Describe how the method in (e)(i) helps in rust prevention.
		[1]

[Turn Over

The speed of reaction between zinc granules and excess 0.1 mol/dm³ dilute sulfuric acid was studied by collecting the gas produced at regular time intervals.

No effervescence was observed after 120 seconds. The total volume of gas collected was 82 cm³ at room temperature and pressure.


(ii) State the identity of the gas produced.

[1]

(ii) Calculate the number of moles of gas produced.

[1]

(b) Sketch the graph of volume of gas produced against time on the axes provided. Label this graph **A**.

[2]

(c)	Describe how the graph in (b) shows that the speed of the reaction decreases as the reaction proceeds.									
	[1]									
(d)	Sketch on the axes provided in (b) to show the expected result when the experiment is repeated,									
	(i) at a higher temperature. Label this graph B.									
	(ii) using excess 0.05mol/dm³ dilute sulfuric acid. Label this graph C . [2]									
(e)	Using the collision theory, explain why the speed of reaction would increase when powdered zinc is used instead.									
	[2]									
(f)	Another student wanted to investigate the speed of reaction between copper and dilute sulfuric acid instead. He observed no effervescence after adding a strip of copper into dilute sulfuric acid.									
	Explain why he was unable to carry out this investigation.									
	. [1]									

Data Sheet Colours of Some Common Metal Hydroxides

calcium hydroxide	white					
copper(II) hydroxide	light blue					
iron(II) hydroxide	green					
iron(III) hydroxide	red-brown					
lead(II) hydroxide	white					
zinc hydroxide	white					

The Periodic Table of Elements

\neg					Γ				Т							_		-		_	Т			_				_	
0	2	耂	halim	4	5	2	?	200	₹	<u>∞</u>	¥	Brgon	40	36	궃	krypto	26	Z	ş	xenon	13	8	듄	rador	1				
5					6	ш	- :	Home	<u> </u>	17	ວັ	chorine	35.5	35	ത്	bromine	8	SS SS	_	odene	127	82	¥	astatine	ı				
N					-		>	oxygen	16	<u>6</u>	တ	Sulfur	32	ষ্ক	မ္တ	selenium	79	25	<u>e</u>	tellurium	428	\$	8	polanium	-	116		Ivermorkum	ı
<u> </u>					-	· z	Ξ,	nitrogen	4	क	Δ	phosphorus	<u>ب</u>	33	As	arsenic	72	হ	S	antimony	122	æ	öö	bismuth	503				
>					9	٠ (,	carpon	12	4	ത	Silicon	88	32	ගී	germanium	73	යි	હ્	Ë	119	8	₽.	peal	207	114	Œ	flerovium m	1
=					ur.	a	۵	5000	7	<u>ლ</u>	A!	akımınının	27	34	g	gallium	70	49	드	indium	115	81	ĭ	thateum	204				
														æ	Zu	zinc	8	48	ਲ	cadmium	112	80	되	mercury	201	112	ర్	copernicium	1
														29	ਹੋ	copper	94	47	Ag	Silver	108	79	₹	pjob	197	111	Ş	roentgenium	I
	ļ													28	Z	nickel	99	46	P	pailadium	106	82	ፚ	ptatinum	195	110	2	darmstadflum	1
														12	රි	cobait	20	45	듄	rhodium	103	Ш	ۓ	ridium	192	109	ž	metrnerium	١
	-	- 1	: .	nyarogen 1	-									26	ų.	<u>.</u>	ထို	44	22	ruthenium	101	9/	ő	osmium	130	108	Hs	hasslum	ı
					_									25	Ž	Tranganese	S.	43	ပ	technetium		75	Re	menium	186	107	뜐	pohrlum	J
					. sohor		g		mass					24	ڻ	стготит	25	42	£	moiybolenum	96	74	≱	tungsten	. <u>\$</u>	106	S	seaborgium	J
				Κρν	(olegala)	(3))))))))))))))))))))))))))))))))))))		name	ve atomic					23	\ 	venadium	51	41	g	miobium	93	73	Ē	mulalum	181	105	2		ᆚ
					Control		ä		relati					22	¦ i⊏	btanium	48	40	Z	zirconium	9	72	Έ	hafinium				≥	ŧ
														X	ů,	Beandium	45	39	>	vttrium	80	57 - 71	lanthanoids			89 - 103	aclinoids		
=					-	4 (œ Ĉ	beryllium	, \$	12	M.		11 Michall (1911)	2 8	- C	Calcum minutes	9	38	, V	strontium	8	56	B	backur	137	88	æ	radium	-
_					c	n;	_	Hhium	~	+	- 2	1 to 1 to 1	233	100	, , ,	notassium	ဇ္ဌ	37	6	rubidium	쫎	25	చ	Caesium	133	87	Ų.	francium	-
					1 H IV V V VI VIII						1	1			1	1	1	1	1	1	1 1 1 1 1 1 1 1 1 1	1	1	1	1 High High High High High High High High	1	1	1	1

7]	intellim:	1/2	103	ت	awrencium a	i
70	\$	yte:bium	173	1 62	ş	robelium	•
69	E	thullum	169	101	₽₩	mendelevium	1
89	ů	erbium	167	100	Ē	fermium	1
67	욷	halminm	165	66	Ęŝ	einsteinum	1
99	۵	dysprosium	163	86	ರ	californium	ı
ങ	<u>.</u> e	te:bir.m	<u>33</u>	26	益	berke⊪un	ı
64	පි	gadolinium	157	8	ç	CURIUM:	ŧ
63	品	europium	152	36	Αm	amencium	ı
29	S	samarium	<u>\$</u>	94	<u>a</u>	pfutonium	ı
61	Ę	proprethium	· I	93	No	neplunium	ı
00	PZ	reodym'um	144	26	_	uranium	238
29	4	praeeadymium	141	91	6	protectinium	231
58	లి	cenum	45	06	1	horium	232
57	- CO	taulhanum.	139	88	Ac	actinium	1

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

actinoids

PSS 2021 4E/5N Science(Chemistry) 5076/5078 Preliminary Examination Marking Scheme – MCQ

1	2	3	4	5	6	7	8	9	10
D	D	Α	В	Α	С	D	A	Α	В
11	12	13	14	15	16	17	18	19	20
С	A	В	С	С	В	С	D	В	С

Distribution

- A-5
- B-5
- C-6
- D 4

PS	S 2021	PSS 2021 Sec 4E/5N Express Science (Chemistry) 5076/5078 Preliminary Examination		Paper 3 Marking Scheme	Г
		Section A	Marks	Marker's comments	
-	(a)	calcium hydroxide	1	Correct answer only	
	(q)	zinc, copper	-		
	(၁)	lead(II) oxide	_		
	(p)	argon	1		
	(e)	steel	-		
2	(a)		-	Do not accept if candidates	
		It travels further from the starting point.	~	state the colour.	
	(i)(o)		₹		
		vellow coloured spot /			
		beta carotene			
		green coloured spot /			
		cholophylis			
		*			
	(c)(ii)	The plant extract would dissolve into the solvent before separation can occur.	4-		

PartnerInLearning

3 1 mark for each box	Do not accept 'incomplete combustion of fuels'.				ms 2 Do not accept if candidates just state 'death'.	Do not accept if candidates just state 'formation of acid rain'.	1 Do not penalise for wrong
	source	volcanic eruption / combustion of fossil fuels	internal combustion engine / lightning activity	incomplete combustion of carbon- containing fuel	res and lungs / cause respiratory problems	Effect on environment: reacts with oxygen and water in the atmosphere to form acid rain, which corrodes limestone buildings or metal structures / harms aquatic life and plants	
	air pollutant	sulfur dioxide	nitrogen dioxide	carbon monoxide	Effect on human: irritation of ey (bronchitis)	Effect on environment: reacts with acid rain, which corrodes limest aquatic life and plants	2NO + O, ↑ 2NO,
(a)					 (q)		(c)(j)
က							

	^
٠.	

Accept explanation using oxidation state	1 mark for covalent bonding 1 mark for correct number of electrons	e.c.f. (deduct max 1 for wrong identification of cation) e.c.f. (deduct max 1 for	including wrong valency) e.c.f. for wrong acid identified
	2		
(c)(ii) It has gained oxygen / reacted with oxygen		A: calcium carbonate B: carbon dioxide C: calcium oxide D: nitric acid	E: calcium nitrate F: calcium hydroxide G: ammonia
(ii)(c)	(p)	<u>g</u>	
		•	

(b) Accept any 1 of the following:	-	1 mark for balanced chemical equation
$CaCO3(s) \rightarrow CaO(s) + CO2(g)$		oteta torron tatal
CO ₂ (g) + Ca(OH)₂(aq) → CaCO₃(s) + H₂O(l)	-	symbols
CaO(s) + 2HNO ₃ (aq) → Ca(NO ₃) ₂ (aq) + H ₂ O(<i>i</i>)		e.c.f from (a)
$Ca(NO_3)_2(aq) + 2NaOH(aq) \rightarrow Ca(OH)_2(s) + 2NaNO_3(aq)$		

description	diagram		
a compound	8		
an element	۷I		
a mixture of an element and a compound	۵		
a mixture of two compounds	111		
$n_{NAOH} = \frac{10}{23 + 16 + 1}$			Accept if candidates find
= 0.25 mol			concentration in g/dm², followed by mol/dm³.
0.25 GN2OH = 0.25		τ-	Do not penalise if
250 1000			candidates did not leave
0 mol/dm³ (3 s.f.)			final answer in 3 s.f.
$H^+(aq) + OH^-(aq) \rightarrow H_2O(l)$			Do not penalise if no state symbols included
$n_{OH^-} = \frac{25}{1000} \times 1.00$		_	Allow e.c.f. from (a)
= 0.025 mol			, c
$n_{OH}^{-}: n_{H^{+}} = 1:1$			Do not penalise II
$n_{H^+} = 0.0250 \text{ mol (3 s.f.)}$			candidates did not leave
		<u>.</u>	IInal answer in 3 s.t.
Heat is given out to the surrounding		_	Do not accept if candidates
			simply states that the
		_	temperature increases

e	7	۳
	4	

_	(a)	Increasing proton / atomic number	ا / atomic number		-	Do not accept if candidates did not state 'increasing'.	tes
	(q)				-	1 mark for each row	
		element	number of electrons	electronic configuration			
		lithium-7	3	2.1			
		potassium-39	19	2.8.8.1			
	(c)(i)	Accept any 1 of the following:	he following:		-		
		2Li + 2H ₂ O → 2LiOH + H ₂	.iOH + H ₂				
		2K + 2H ₂ O → 2KOH + H ₂	(OH + H ₂				
	(c)(ji)	Similarity: the colour of effervescence observed.	the solution	changes from green to purple /	~ ~		
		Explanation: The produced.	e solutions formed are alkal	Explanation: The solutions formed are alkalis / are alkaline or hydrogen is produced.			
		Difference: Lithit water / The rate	um reacts quickly while pota of effervescence is faster in p	Difference: Lithium reacts quickly while potassium reacts very violently with water / The rate of effervescence is faster in potassium than lithium / The rate	~		
		of effervescence	of effervescence is slower in lithium than potassium.	assium.	4-		
		Explanation: Potassium is more than potassium / the reactivity in	Explanation: Potassium is more reactive than lithium / lith than potassium / the reactivity increases down for Group I.	reactive than lithium / lithium is less reactive creases down for Group I.	-		

ı	۰	

	Section B	B u		
ω	(a)	Calcium, iron, nickel, copper		And the state of t
	(j)(q)	Calcium is placed above carbon in the reactivity series / carbon is not strong enough to reduce calcium oxide to calcium.	_	Do not accept if candidates state that
				mism ve t
	(ii)(q)	Electrolysis	-	Do not accept if wrongly spelt
	(c)(j)	-t / * / -t / -t / -t / -t / -t / -t / -	-	1 mark for each
			-	
		Ca ××		Accept drawing with all electron
				shells
	(c)(ii)	In solid calcium oxide, the ions are held together in their fixed position by strong electrostatic forces of attraction in the giant lattice structure / have no free-moving ions		
		In molten calcium oxide, the jons are free-moving and can act as charge carriers.		
	(p)	Accept any 1 of the following: High melting and boiling points	-	Do not accept: flexible solid at r.t.p.
		Malleable High density Hard		shiny sonorous
	(e)(i)	Electroplating / galvanising / coating the iron with oil or paint or plastic	_	

	_
n	r
•	٠

	(e)(ji)	It prevents the iron from being in contact with air (oxygen) and water.		
တ	(a)(i)	Hydrogen / H ₂	-	Correct answer only
	(a)(ii)	$^{82}_{\text{H}_2} = \frac{82}{24000}$ = 0.00342 mol (3 s.f.)	~	
	(a)	volume of hydrogen produced/cm ³	~ ~	1 mark for correct shape
		82 A		I mark for label (120, 82) and A
		0 120 time/s		
	(0)	As the reaction proveds, the gradient decreases / becomes gentler.	-	

(p)	volume of das produced / cm ³	~	For curve B:
		₹-	steeper initial
		-	gradient <u>and</u>
			plateau off
	B		before 120s
	C A C		For curve C:
			gentler initial
			gradient and
			platean off
	s / euil		after 120s
			Deduct
			maximum 1
			mark from (b)
			or (d) for no
			label
(e)	When powdered zinc instead of zinc granule is used, the surface area to volume	2	3 points – 2
	ratio of zinc increases. This increases the frequency of collision between zinc and		III di KS
<u></u>	hydrogen ions. Thus, there is an increase in the frequency of effective collision,		1/2 points - 1
	increasing the speed of reaction.		mark
(Copper is placed below hydrogen in the reactivity series / copper is unreactive	-	