Name:()	Class: 3E
		l

GREENDALE SECONDARY SCHOOL End-of-Year Examination 2018

ADDITIONAL MATHEMATICS

08 Oct 2018

Secondary Three Express

2 hour 30 minutes

Candidates answer on the Writing Paper.

READ THESE INSTRUCTIONS FIRST

Write your index number and name on all the work you hand in.

Write in dark or blue pen.

You may use a soft pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working may result in loss of marks.

You are expected to use a scientific calculator to evaluate explicit numerical expressions. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place. For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

The total number of marks for this paper is 100.

This document consists of 5 printed pages, including this cover page.

Greendale Secondary School 2018

End-Year Examination 2018

Mathematical Formulae

1. ALGEBRA

Quadratic Equation

For the equation $ax^2 + bx + c = 0$,

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Binomial expansion

$$(a+b)^{n} = a^{n} + \binom{n}{1}a^{n-1}b + \binom{n}{2}a^{n-2}b^{2} + \dots + \binom{n}{r}a^{n-r}b^{r} + \dots + b^{n},$$
where *n* is a positive integer and $\binom{n}{r} = \frac{n!}{r!(n-r)!} = \frac{n(n-1)\dots(n-r+1)}{r!}$

2. TRIGONOMETRY

Identities

$$\sin^2 A + \cos^2 A = 1$$

$$\sec^2 A = 1 + \tan^2 A$$

$$\csc^2 A = 1 + \cot^2 A$$

$$\sin(A \pm B) = \sin A \cos B \pm \cos A \sin B$$

$$\cos(A \pm B) = \cos A \cos B \mp \sin A \sin B$$

$$\tan(A \pm B) = \frac{\tan A \pm \tan B}{1 \mp \tan A \tan B}$$

$$\sin 2A = 2\sin A \cos A$$

$$\cos 2A = \cos^2 A - \sin^2 A = 2\cos^2 A - 1 = 1 - 2\sin^2 A$$

$$\tan 2A = \frac{2\tan A}{1 - \tan^2 A}$$

Formulae for \(\Delta ABC \)

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$
$$\Delta = \frac{1}{2}ab \sin C$$

End-Year Examination 2018

Additional Mathematics

Answer all questions and start each question on a fresh page.

- 1 Given that the points (d,10d), (0.75,0) and (1.5,5+4d) are collinear, find the possible values of d. [4]
- Without using a calculator, find the constants a and b, for which $\frac{2\sqrt{10} + \sqrt{3}}{\sqrt{6} \sqrt{5}}$ can be expressed as $a\sqrt{2} + b\sqrt{15}$.
- 3 The function f is defined by $f(x) = -3\cos(0.5x)$.
 - (i) Write down the period and amplitude of f(x). [2]
 - (ii) Sketch the graph of f(x) for $0^{\circ} \le x \le 360^{\circ}$. [3]
- 4 A curve has the equation $y = 2x^2 + x + a$, where a is a constant.
 - (i) When a = -10, find the range of values of x for which $y \le 2x + 5$ [3]
 - (ii) Find the value of a for which the line y = 5x + 1 is tangent to the curve. [4]
- 5 Solve, for x and y, the simultaneous equations

$$\frac{5^{2x}}{5^{3y}} = \frac{5}{5^3(5^y)}$$

$$\log_3(x-4) = \log_3(y-1) - \log_3 x.$$
 [7]

- The curve $y = 3\log_2 kx$ passes through the points with coordinates (0.25,0) and (8,1).
 - (i) Determine the values of k and l. [2]
 - (ii) Sketch the graph of $y = 3\log_2 kx$ [2]
 - (iii) By drawing a suitable graph on the same set of axes, find the number of solutions to the equation $3\log_2 kx \frac{5}{x^2} = 0$, $x \ne 0$. [2]

End-Year Examination 2018

Additional Mathematics

- Fine the exact value of $\frac{\tan 45^{\circ}}{\sin 60^{\circ} + \sec 45^{\circ}}$. 7 [3]
 - **(b)** Given that $\sin A = \frac{3}{5}$ and $\tan B = -\frac{12}{5}$, and that A and B are in the same quadrant, find without using a calculator the value of

(i)
$$\cos(90^\circ - A)$$
 [1]

(ii)
$$\sin B$$
 [1]

(iii)
$$\frac{\cot A}{\sin B}$$
 [2]

The roots of the quadratic equation $2x^2 + 5x - 3 = 0$ are α and β .

(i) Show that
$$\alpha^2 + \beta^2 = 9.25$$
. [3]

- Find a quadratic equation whose roots are α^3 and β^3 . [5]
- 9 Write down and simplify the first 3 terms in the expansion of $(2+x)^5$, (a) **(i)** [2] in ascending powers of x.
 - Find the coefficient of a^2 in the expansion of $(2+a^2+3a)^5$. **(ii)** [3]
 - Find the term independent of x in the binomial expansion of $\left(3x + \frac{1}{2x^2}\right)^3$. [4]
- Find the coordinates of all the points at which the graph y = -|x+5|+310 (i) [4] meets the coordinate axes.

(ii) Sketch the graph of
$$y = -|x+5|+3$$
. [2]

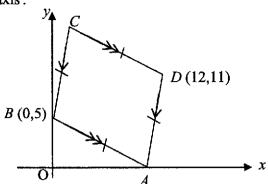
(iii) Solve the equation
$$-|x+5|+3=0.5x$$
. [3]

- (iv) Hence, state the range of values of x such that -|x+5|+3>0.5x. [1]
- Find the remainder when $2x^3 + 3x^2 11x 6$ is divided by 2x + 3. 11 [2] **(i)**
 - Factorise completely the cubic polynomial $2x^3 + 3x^2 11x 6$. [4] (ii)
 - (iii) Hence, express $\frac{9x^2+14x+11}{2x^3+3x^2-11x-6}$ in partial fractions. [4]

[2]

End-Year Examination 2018

12 The diagram shows a rhombus ABCD. B and D are (0,5) and (12,11) respectively and A lies on the x-axis.



(i) Show that the gradient of AC is -2.

Find,

- (ii) the midpoint of BD, [1]
- (iii) the coordinates of A and C, [5]
- (iv) the area of ABCD. [2]
- 13 (a) Solve the equation $2 \tan^2 \theta = 1 + 5 \sec \theta$ for $0 \le \theta \le 2\pi$. [4]
 - (b) (i) Show that

$$\sec \theta + \cot \theta \csc \theta = \sec \theta \csc^2 \theta.$$
 [4]

(ii) Hence, solve the equation

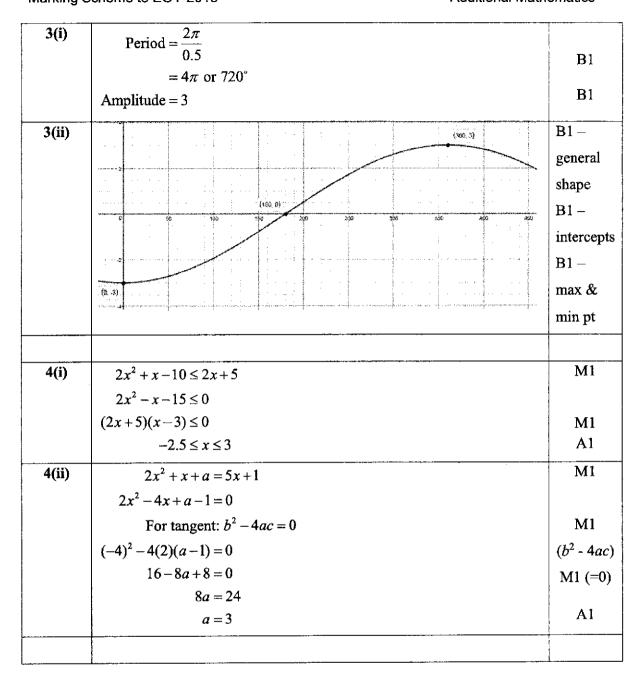
 $\sec \theta + \cot \theta \csc \theta = \sec \theta \cot^2 \theta + 2$,

for $0^{\circ} \le x \le 360^{\circ}$ [4]

End - of - Paper

2018 END-YEAR EXAMINATION SEC 3EX AMATH PAPER

Qn	Solutions	Marks
1	Collinear implies that the gradient would be the same for any two lines	
	formed by the 3 points.	
	10d-0 $5+4d-0$	
	$\frac{10d - 0}{d - (0.75)} = \frac{5 + 4d - 0}{1.5 - 0.75}$	M1
	$\frac{10d}{d-0.75} = \frac{5+4d}{0.75}$	
	1 3173	M1
	$7.5d = 5d - 3.75 + 4d^2 - 3d$	
	$4d^2 - 5.5d - 3.75 = 0$	
	$d = \frac{5.5 \pm \sqrt{(-5.5)^2 - 4(4)(-3.75)}}{2(4)}$	M1
		A1
	=-0.5 or $=-1.875$	AI
2	$\frac{2\sqrt{10} + \sqrt{3}}{\sqrt{6} - \sqrt{5}} = \frac{2\sqrt{10} + \sqrt{3}}{\sqrt{6} - \sqrt{5}} \times \frac{\sqrt{6} + \sqrt{5}}{\sqrt{6} + \sqrt{5}}$	M1
	$=\frac{2\sqrt{60}+2\sqrt{50}+\sqrt{18}+\sqrt{15}}{\sqrt{6}^2-\sqrt{5}^2}$	M1
	$= \frac{4\sqrt{15} + 10\sqrt{2} + 3\sqrt{2} + \sqrt{15}}{6 - 5}$ $= \frac{5\sqrt{15} + 13\sqrt{2}}{1}$	
	= 6-5	M 1
	$5\sqrt{15} + 13\sqrt{2}$	
		M 1
	$=13\sqrt{2}+5\sqrt{15}$	
	$\therefore a = 13, b = 5$	A1



Greenaa	ale Seconda	ry School
	Scheme to	

5	5^{2x} 5^1	
	$\frac{1}{5^{3y}} = \frac{1}{5^3(5^y)}$	
	$5^{2x-3y} = 5^{1-3-y}$	M1
	2x - 3y = -2 - y	M1
	2x - 2y = -2	
	y = x + 1 (1)	
	$\log_3(x-4) = \log_3(y-1) - \log_3 x$	
	$\log_3(x-4) = \log_3\frac{(y-1)}{x}$	M1
	$x-4=\frac{y-1}{x}$	
	$x^2 - 4x = y - 1$	
	$y = x^2 - 4x + 1 (2)$	M1
	Sub (1) into (2),	
	$x^2 - 4x + 1 = x + 1$	M1
	$x^2 - 5x = 0$	
	x(x-5)=0	A1
	x = 0 (rej) or $x = 5$	A1
	y = 6	Ai

6(i)	$y = 3\log_2 kx$	
	Sub $x = 0.25$ and $y = 0$,	
	$0 = 3\log_2 k(0.25)$	
	$\log_2 k(0.25) = 0,$	
	k(0.25) = 1	В1
	k=4	В1
	Sub $x = 8$ and $y = l$,	
	$l = 3\log_2 4(8)$	
	l=3(5)	
	=15	B1
6(ii)	(6, 25)	
		B1 –
		general
		shape
		B1 –
	(0.28.0)	intercept
		пистоорі
6(iii)	$3\log_2 kx - \frac{5}{x^2} = 0$ $3\log_2 kx = \frac{5}{x^2}$	
	5	
	$3\log_2 kx = \frac{1}{x^2}$	
	Draw $y = \frac{5}{x^2}$	
	$\int 1 dw y - \frac{1}{x^2}$	Ml
		į
		A1

Greenda	le Second	dary So	chool
Marking	Scheme t	o EOY	2018

7(a)	ton 45° 1	M1
, ()	$\frac{\tan 45^{\circ}}{\sin 60^{\circ} + \sec 45^{\circ}} = \frac{1}{\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{1}}$	
	$\frac{\sqrt{3}}{2} + \frac{\sqrt{2}}{1}$	
	1	
	$=\frac{1}{\frac{\sqrt{3}+2\sqrt{2}}{2}}$	
	2	
-	$=\frac{2}{\sqrt{3}+2\sqrt{2}}\times\frac{\sqrt{3}-2\sqrt{2}}{\sqrt{3}-2\sqrt{2}}$	
	$\sqrt{3}+2\sqrt{2}$ $\sqrt{3}-2\sqrt{2}$	M 1
	$=\frac{2\sqrt{3}-4\sqrt{2}}{3-8}$	
	3-8	
	$=\frac{4\sqrt{2}-2\sqrt{3}}{5}$	A1
7(b)(i)	(00 A) rin A	
/(b)(i)	$\cos(90 - A) = \sin A$	
	$=\frac{3}{5}$	
	But since A is in the 2 nd quadrant	
	1	70.1
	$\cos(90 - A) = -\frac{3}{5}$	B1
7(b)(ii)	$\tan B = -\frac{12}{5}$	
		:
	$\Rightarrow \text{opp} = 12$ $\Rightarrow \text{adj} = 5$	
	$\therefore \text{ hyp} = 13(\text{Pythagoras'})$	
	$\sin B = \frac{12}{13}$	B 1
7(b)(iii)	$\sin A = \frac{3}{5}$	
	$5 \Rightarrow \text{opp} = 3$	
	$\Rightarrow hyp = 5$	
	∴ adj = 4(Pythagoras')	
	$\cot A = -\frac{4}{-}$	
	$\left \begin{array}{c} \omega_{1}A=-\frac{1}{3} \end{array}\right $	M1
	$\cot A = -\frac{4}{3}$	
	$\frac{\cot A}{\sin B} = \frac{3}{12}$	
	13	
	$=-\frac{13}{9}$	A1
	7	
		<u> </u>

Greenuale	Second	ary School	
Marking Se	cheme to	EOY 2018	3

8(i)	$2x^2 + 5x - 3 = 0$	M1 – for
	$\alpha + \beta = -\frac{5}{2}$	either
	_	SOR or
	= -2.5	POR
	$\alpha\beta = \frac{-3}{2}$	
	=-1.5	
	$\alpha^2 + \beta^2 = \alpha^2 + \beta^2 + 2\alpha\beta - 2\alpha\beta$	
	$=(\alpha+\beta)^2-2\alpha\beta$	M1
	$=(-2.5)^2-2(-1.5)$	
	=9.25 (shown)	A1
8(ii)	$\alpha^3 + \beta^3 = (\alpha + \beta)(\alpha^2 - \alpha\beta + \beta^2)$	M1
	$=(\alpha+\beta)\Big[(\alpha^2+\beta^2)-\alpha\beta\Big]$	
	=(-2.5)[9.25-(-1.5)]	
	$=-26\frac{7}{8}$	M1
	$\alpha^3 \beta^3 = (\alpha \beta)^3$	M1
	$=(-1.5)^3$	
	$=-3\frac{3}{8}$	M1
	$x^2 - \left(-26\frac{7}{8}\right)x + \left(-3\frac{3}{8}\right) = 0$	A1
	$8x^2 + 215x - 27 = 0$	

9(a)	$(2+x)^5 = 2^5 + {}^5C_1(2)^5(x) + {}^5C_2(2)^4(x)^2 + \dots$	M1
	$\approx 32 + 80x + 80x^2$	A1
	$(2+x)^5 = (2+a^2+3a)^5$	
	$= 32 + 80(a^2 + 3a) + 80(a^2 + 3a)^2$	M1
	Coefficient of a^2 in $(2+a^2+3a)^5 = (80)[1]+(80)(3^2)$	M1
	= 80 + 720	
	= 800	A1
9(b)(i)	$T_{r+1} = {}^{9}C_{r}(3x)^{9-r} \left(\frac{1}{2x^{2}}\right)^{r}$	M1
	$= {}^{9}C_{r}(3^{9-r}x^{9-r})(2^{-r}x^{-2r})$	
	$= {}^{9}C_{r}3^{9-r}2^{-r}x^{9-3r}$	M1
	Term independent of x:	
	9-3r=0	
	r=3	M1
	The 4th term is the independent term.	1721
	$T_4 = {}^9C_3 3^{9-3} 2^{-3} x^{9-9}$	
	$=7654\frac{1}{2}$	A1

10(i)	y = - x+5 +3	
	When $x = 0$,	
	y = - 5 +3	
	= -2	
	When $y = 0$,	
	0 = - x+5 +3	
	x+5 =3	
	-x-5=3 or $x+5=3$	M1
	x = -8 or $x = -2$	
	(0,-2), (-8,0), (-2,0)	A3
10(ii)	(3.2)	B1 –
		General
		shape
	(20)	_
	(e.u)	B1 ecf-
		labelled
	(0.4)	
		intercepts
10(iii)	- x+5 +3=0.5x	
	x+5 = 3-0.5x	
	-x-5=3-0.5x or $x+5=3-0.5x$	M1
	$x = -16$ or $x = -\frac{4}{3}$	A1, A1
	3	·
10(iv)	$-16 < x < -\frac{4}{3}$	B1
20(21)	3	

Greendale Secondary School
Marking Scheme to EOY 2018

11(i)	$P(x) = 2x^3 + 3x^2 - 11x - 6$	
	$P\left(-\frac{3}{2}\right) = 2\left(-\frac{3}{2}\right)^3 + 3\left(-\frac{3}{2}\right)^2 - 11\left(-\frac{3}{2}\right) - 6$	M1
	=10.5	A1
11(ii)	$P(x) = 2x^3 + 3x^2 - 11x - 6$	
	Sub $x = -3$ into $P(x)$	
	$P(-3) = 2(-3)^3 + 3(-3)^2 - 11(-3) - 6$	M1
	= 0	
	$\Rightarrow x+3$ is a factor of $P(x)$	M1
	$P(x) = (x+3)(2x^2-3x-2)$	M1
	= (x+3)(2x+1)(x-2)	A1
11(iii)	$9x^2 + 14x + 11$	
	$\frac{9x^2 + 14x + 11}{2x^3 + 3x^2 - 11x - 6} = \frac{A}{(x+3)} + \frac{B}{(x-2)} + \frac{C}{(2x+1)}$	
	$9x^2 + 14x + 11 = A(x-2)(2x+1) + B(x+3)(2x+1) + C(x+3)(x-2)$	M1 ecf
	Sub $x = -3$	
	50 = 25A	M1 ecf
	A=2	WITCCI
	Sub $x = 2$	
	75 = 25B	
	B=3	M1 ecf
	Sub $x = -0.5$	
	6.25 = -6.25C	
	C = -1	
	$\frac{9x^2 + 14x + 11}{2x^3 + 3x^2 - 11x - 6} = \frac{2}{(x+3)} + \frac{3}{(x-2)} - \frac{1}{(2x+1)}$	A1
	$2x^3 + 3x^2 - 11x - 6 (x+3) (x-2) (2x+1)$	
		<u></u>

Greenu	1916	Seco	iuai	y SC	HOOI
Marking					

126)	11 5	
12(i)	$m_{BD} = \frac{11-5}{12-0}$	
	$=\frac{1}{2}$	M1
	Since BD is perpendicular to AC,	
	$m_{BD} \times m_{AC} = -1$	
		A1
	$m_{AC} = -1 \div \frac{1}{2}$	A
	=-2 (shown)	
12(ii)	Midpoint of BD = $\left(\frac{0+12}{2}, \frac{5+11}{2}\right)$	
	$\begin{pmatrix} 2 & 2 \end{pmatrix}$	
	=(6,8)	B1
12(iii)	Equation of AC:	
	Since midpoint of BD is also the midpoint of AC ,	
	y-8=-2(x-6)	
	y = -2x + 12 + 8	
	y = -2x + 20	M1
	At A , $y = 0$	
	-2x+20=0	
	x = 10	M1
	∴ A(10,0)	A1
	Let the coordinates of C be (x_1, y_1)	
	$(6,8) = \left(\frac{10+x_1}{2}, \frac{0+y_1}{2}\right)$	
	$(x_1, y_1) = (2,16)$	
	$\therefore C(2,16)$	B 1
	OR	(x value)
	By observation,	В1
	$A(10,0) \to D(12,11)$	(y value)
	$B(0,5) \to C(2,16)$,
10(1)		M1 ecf
12(iv)	Area = $\frac{1}{2} \begin{vmatrix} 10 & 0 & 2 & 12 & 10 \\ 0 & 5 & 16 & 11 & 0 \end{vmatrix}$	IVIT ECI
	$= \frac{1}{2} (50+22) - (10+192+110) $	
	_	
	$=\frac{1}{2} -240 $	
	$= 120 \text{ units}^2$	A1
	- 120 unto	

13(a)	$2\tan^2\theta = 1 + 5\sec\theta$	
	$2(\sec^2\theta - 1) = 1 + 5\sec\theta$	M1
	$2\sec^2\theta - 2 - 1 - 5\sec\theta = 0$	
	$2\sec^2\theta - 5\sec\theta - 3 = 0$	
	$(2\sec\theta+1)(\sec\theta-3)=0$	M1
,	$2\sec\theta = -1 \text{or} \sec\theta = 3$	1411
	$\sec \theta = -0.5 \text{or} \cos \theta = \frac{1}{3}$	
	$\cos \theta = -2(NA)$ or basic angle $\alpha = 1.2309$	M1
	$\theta = 1.2309, 5.0522$	
	=1.23, 5.05 (3sf)	A1
13(b)(i)	$LHS = \sec \theta + \cot \theta \csc \theta$	
	$=\frac{1}{\cos\theta}+\frac{\cos\theta}{\sin\theta}\frac{1}{\sin\theta}$	M1
	$=\frac{1}{\cos\theta}+\frac{\cos\theta}{\sin^2\theta}$	
		M1
	$=\frac{\sin^2\theta+\cos^2\theta}{\cos\theta\sin^2\theta}$	IVII
	$=\frac{1}{\cos\theta\sin^2\theta}$	M1
	$= \sec \theta \csc^2 \theta$	A1
	= RHS	
13(b)(ii)	$\sec \theta + \cot \theta \csc \theta = \sec \theta \cot^2 \theta + 2$	
	$\sec\theta\csc^2\theta = \sec\theta\cot^2\theta + 2$	M1
	$\sec\theta\csc^2\theta - \sec\theta\cot^2\theta = 2$	
	$\sec\theta(\csc^2\theta - \cot^2\theta) = 2$	
	$\sec \theta(1) = 2$	M1
	$\sec \theta = 2$	
	$\cos \theta = 0.5$	M1
	basic angle $\alpha = 60$	
	$\theta = 60$,300	A1
	1	1