Class	Index Number	Candidate Name

ANG MO KIO SECONDARY SCHOOL PRELIMINARY EXAMINATION 2021 SECONDARY FOUR EXPRESS / FIVE NORMAL ACADEMIC

MATHEMATICS
Paper 1

4048/01

Monday

30 August 2021

2 hours

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the spaces at the top of this page.

Write in dark blue or black pen on both sides of the paper.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal

give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 80.

For Examiner's Use

This document consists of 22 printed pages.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curve surface area of a cone = πrl

Surface area of a sphere = $4\pi r^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3} \pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector Area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$

$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

Answer all the questions.

1	(a)	Simplify	$\left(\frac{3}{x}\right)^{-2}$.
---	-----	----------	-----------------------------------

(b) Solve $3^y \times 4^y = 12^{5-y}$.

Answer
$$y =$$
 [2]

Given that $2x-3 < \frac{2}{3}(9x-6)$, solve the inequality and hence find the smallest possible value 2 of x if x is a prime number.

Answer
$$x =$$
 [3]

AMKSS 4E5N Prelim

4048/01/2021

The coordinates of points A and B are (5, -3) and (7, 2) respectively.

3

(:	a)	Find the length of the line AB.
		·
		Answer [2]
((b)	The line $hx-2y=k$ is parallel to AB and passes through the point (3, 8). Find the value of h and of k.

Answer h = k = [3]

AMKSS 4E5N Prelim

4048/01/2021

4	Express	as a	single	fraction	in	its	simplest	form
7	TATALAND	· ·	2112	II WOULD II	***	**D	0111101101	

$$2-\frac{3a-b}{a+b}$$
.

Answer	[2

5 The number of people living in a city in 2010 was given as 279 400, correct to the nearest hundred.

The number of people living in the same city in 2020 was given as 531 000, correct to the nearest thousand.

Find the maximum increase in the number of people living in the city between the year 2010 and the year 2020.

Answer [2]

4048/01/2021

6	Salva the	simultaneous	aquations
Ð	Solve the	simunaneous	equations

$$x-4y=17,$$

$$2x+3y=1.$$

Answer
$$x = y = [3]$$

7 The graph shows the sales figures of 2 gaming consoles manufactured by a company.

A sales executive from the company claimed that the chart showed comparable growth in the sales of the 2 gaming consoles. Do the chart support his claim? Justify your answer with reference to the chart.

Answer	

AMKSS 4E5N Prelim

4048/01/2021

8		Two coloured chips are taken from a box at random with replacement. The box contains 3 green chips and 8 yellow chips.					
	(a)	Emily said that the probability that both chips are yellow is $\frac{28}{55}$. Explain what she has done wrong.					
		Answer					
	·		[1]				
	(b)	Find the probability that at least one of the chips is yellow.					
	-,-	Answer	[2]				

AMKSS 4E5N Prelim

[Turn Over

4048/01/2021

	O
9	x is inversely proportional to the cube root of y. It is given that $x=6$ for a particular value of y. Find the new value of x when this value of y decreases by 87.5%.
	Answer $x = $ [2]
10	An online sales platform offers x % cash rebate capped at y dollars for each order. Find the minimum amount in dollars, in terms of x and y , one should purchase in each order to maximise the rebate.

Answer \$ [2

AMKSS 4E5N Prelim

4048/01/2021

In the diagram, ABCD is a straight line. BE = 7.5 cm, angle $CDE = 90^{\circ}$ and $\cos \angle ABE = -\frac{4}{5}$. Find the length of ED.

Answer	cm	[2]
Answer	 CIII	[4]

Patrick made a fruit cordial drink by mixing water and syrup in the ratio of 18:7. After finding the drink was too sweet, he added 1.3 litres of water such that the ratio of water to syrup became 17:3. Find the amount of the syrup used.

Answer litres [3]

AMKSS 4E5N Prelim

4048/01/2021

13	(a)	Express	180 as a	product	of its	prime	factors.
----	-----	---------	----------	---------	--------	-------	----------

Answer	[1]	
Answer	L*J	

(b) The number 180 pq is a perfect square.
 p and q are composite numbers that are larger than 10 and p is smaller than q.
 Find the smallest possible value of p and the value of q.

Answer
$$p = \underline{\qquad} q = \underline{\qquad} [2]$$

AMKSS 4E5N Prelim

4048/01/2021

14 The diagram shows a quadrilateral ABCD.

On the diagram,

(a) construct the perpendicular bisector of BC,
(b) construct the angle bisector of angle ABC,
(c) A point E, inside the quadrilateral ABCD, is equidistant from B and C and closer to AB than BC. Mark and label a possible location of point E.

AMKSS 4E5N Prelim 4048/01/2021 [Turn Over

PartnerInLearning 266

In the diagram, A and B are due south of C. The lines PAE and QBD are parallel. Angle $BAE = 50^{\circ}$ and the bearing of D from C is 137°

Find

(a) the bearing of Q from B,

Answer	0	[1]

(b) reflex angle *DEA*.

Average	0	Γ21
Answer	•	[4]

AMKSS 4E5N Prelim

4048/01/2021

16 The curve y = -(x-3)(2x+b) cuts the x-axis at the point A and the y-axis at the point (0, 6).

(a) Find the value of b.

Answer
$$b = [1]$$

(b) State the coordinates of point A.

(c) Find the maximum value of y.

Answer
$$y =$$
 [2]

AMKSS 4E5N Prelim

4048/01/2021

A restaurant charges different delivery fees for customers staying in different zones. The matrix **P** shows the number of orders from zone A, B and C on a Saturday and Sunday respectively.

$$P = \begin{pmatrix} A & B & C \\ 85 & 42 & 16 \\ 90 & 65 & 28 \end{pmatrix}$$
 Saturday Sunday

(a) The restaurant charges \$2, x and \$8 for each delivery to zone A, B and C respectively. Represent this information in a 3×1 matrix Q.

Answer
$$\mathbf{Q} = \begin{bmatrix} 1 \end{bmatrix}$$

(b) Find, in terms of x, the matrix R = PQ.

Answer
$$\mathbf{R} = [2]$$

(c) Given that on Sunday the restaurant collected \$232.50 more in delivery fees compared to Saturday, find the value of x.

Answer
$$x =$$
 [1]

AMKSS 4E5N Prelim

4048/01/2021

18 The stem-and-leaf diagram shows the amount of time spent on exercising in a gym by 20 members on a particular day.

Stem	Leaf
2	5
3	0 2 6 9 3 5 5
4	3 5 5
5	1 6 8
6	0 0 0 3 4 8
7	0.5 .
8	0

Key: 2 | 5 represents 25 minutes

(a) F	ind the modal	time spent on	exercising.	
-------	---------------	---------------	-------------	--

		Answer	***************************************	min	[1]
(b)	Find the mean time spent on exercising.				
		Answer	***************************************	min	[1]
(c)·	Given that 70% of the gym members exerc smallest possible integer value of x .	cised for 1	more than x minutes, state the		
		Answer	x =		[1]
(d)	It is discovered that 2 of the values have be The number 32 should have been 40 and th Explain how the mean will be affected.				
	Answer		***************************************		[1]

AMKSS 4E5N Prelim 4048/01/2021 **[Turn Over**

19 The graph shows the concentration of chlorine, in milligrams per litre, of water in a swimming pool throughout a particular day. A device replenishes chlorine automatically when the concentration falls below a certain level. (1 milligram = 10^{-3} gram)

Concentration of Chlorine (mg/L)

(a) At what time was the chlorine replenished?

Answer	Г1	17
Answer	L ¹	ı j

(b) The concentration of chlorine drops slowly as time passes but rapidly when the pool is being used. Given that the pool is not open for 24 hours, write down the possible opening hours of the pool.

Answer	to	[1

AMKSS 4E5N Prelim

4048/01/2021

	(c)	(c) Given that there are 2 million litres of water in the pool, find the amount of chlorine, in kilograms, added to the pool.			
		•			
		Answer kg	[2]		
20	Exp	hexagonal tile, 2 interior angles are x° each and remaining interior angles are y° each. lain if it's possible to place 3 of these tiles adjacent to one another so that there is no gap in veen. Justify your answer with working.			
	Ans	way.			
	Ans	wer			

	303001313				

	********		[2]		

AMKSS 4E5N Prelim

4048/01/2021

21	(a)	$\varepsilon = \{x : x \text{ is a positive integer and } x \le 15\}$ $A = \{x : x \text{ is an even number}\}$ $B = \{x : x \text{ is an integer whose last digit is 5}\}$	
		(i) List the elements in set A' .	
		Answer [1] (ii) State the number of elements in the set $A \cap B$.	1]
		Answer [1]
	(b)	The universal set, ε , contains three sets, C , D and E . The three sets satisfy the following conditions:	

Complete the Venn diagram below to illustrate these sets.

 $D \subset C, D \cap E = \emptyset$ and $C' \cap E \neq \emptyset$.

[2]

The diagram shows a birthday cake made up of 2 geometrically similar cylindrical tiers. The diameters of the upper tier and lower tier are 2x cm and 3x cm respectively. The height of the lower tier is 10.5 cm.

(a) Find the total height of the cake.

Answer		cm	[2]
--------	--	----	-----

(b) Given that the cake weighs a total of 1.4 kg, find the weight of the lower tier.

Answer	2017000271125041101015555144000000000000000000000	kg	[2]
--------	---	----	-----

AMKSS 4E5N Prelim

4048/01/2021

23	The diagram shows the floor plan of each level of a 6-storey shopping mall drawn to the scale of 1 cm represent 15 metres.	
	The Gross Floor Area (GFA) of a building is the sum of the floor areas of all the spaces within the building.	
	(a) Using the plan, find the total gross floor area of the shopping mall.	
	Answer $ m m^2$ [2	·]
	(b) Occupancy limit of the mall was changed from one person per 10 square metres of GFA to one person per 16 square metres of GFA. Find the decrease in number of people allowed in the mall.	
	Answer[2	<u>']</u>

AMKSS 4E5N Prelim

4048/01/2021

			21		
24	(a)	Fact	orise completely $12xy - 5 + 20x - 3y$.		
			Answer		[2]
	(b)	The	total surface area of a solid cube is $(6a^2 - 48ab + 96b^2)$ cm ² .		
		(i)	Find, in terms of a and b , the length of each side of the cube.		
					[2]
			Answer	************	[2]
		(ii)	Hence find the volume of the cube if $a = 7$ and $b = 1$.		
		(-)			
			Answer	cm ³	[1]

AMKSS 4E5N Prelim

4048/01/2021

25 The diagram shows a trapezium ABCD with AB parallel to DC. AB = 6.75 cm, BD = 9 cm, DC = 12 cm and AD = 13.5 cm.

(a) Show that triangle ABD is similar to triangle BDC. Give a reason for each statement you make

Answer .	*******************	4004VEI44AAADZ<<4bb/44AA	***************	******************		*****
***************************************		医脓毒素 医水色 医食物 医白色 机铁石 化二氢二甲基	· 李林 图 作品 计 《 省 省 省 省 省 省 省 省 省 省 省 省 省 省 省 省 省 省	******************		******
************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	>++++	z	**************	PUAAEANUU 1,1W1 FFFHAU 1 PODAA 64110	
***************************************		******************	*******************	**********************	>	* # # # # # # # # # # # # # # # # # # #
***************************************	*************************		.c	*********************	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	[3]

(b) Find the perimeter of trapezium ABCD.

Answer	SELMENTEN KAKIIN KARIIN KARI	cm	[2]

END OF PAPER

AMKSS 4E5N Prelim

4048/01/2021

PartnerInLearning www.testpa@artfree.com

Index Number Name Class

ANG MO KIO SECONDARY SCHOOL **PRELIMINARY EXAMINATION 2021** SECONDARY FOUR EXPRESS / FIVE NORMAL ACADEMIC

MATHEMATICS Paper 2

4048/02

Tuesday

31 August 2021

2 hours 30 minutes

Candidates answer on the Question Paper

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class in the spaces at the top of this page. Write in dark blue or black pen on both sides of the paper.

You may use a pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate. If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

The number of marks is given in brackets [] at the end of each question or part question.

The total of the marks for this paper is 100.

For Examiner's Use 100

This document consists of 24 printed pages.

Mathematical Formulae

Compound interest

Total amount =
$$P\left(1 + \frac{r}{100}\right)^n$$

Mensuration

Curved surface area of a cone = πrl

Surface area of a sphere = $4\pi^2$

Volume of a cone =
$$\frac{1}{3}\pi r^2 h$$

Volume of a sphere =
$$\frac{4}{3}\pi r^3$$

Area of triangle
$$ABC = \frac{1}{2}ab \sin C$$

Arc length = $r\theta$, where θ is in radians

Sector area =
$$\frac{1}{2}r^2\theta$$
, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc \cos A$$

Statistics

Mean =
$$\frac{\sum fx}{\sum f}$$

Standard deviation = $\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$

[Turn over for Question 1]

4048/02/2021 **Turn Over**

Answer all the questions.

1 (a) Simplify
$$\frac{(3ab)^2}{3} \div \frac{2a}{b^0}$$

		Answer	[2]
(b)		$\frac{\sqrt{b+2c}}{3-b}$	
	(i)	Evaluate a when $b = -4$ and $c = 3$.	

(ii) Express b in terms of a and c.

Answer	•••••••••••••••••	[3]
--------	-------------------	-----

AMKSS 4E5N Prelim

4048/02/2021

(c) (i) Express $9 - 5x + x^2$ in the form $p + (q + x)^2$.

	•	
Answer		[2]

(ii) Sketch the graph of $y = 9 - 5x + x^2$ on the axes below.

(iii) Write down the equation of the line of symmetry for $y = 9 - 5x + x^2$.

Answer [1]	[]
------------	----

4048/02/2021

[Turn Over

[2]

The diagram represents a field *PQRS* on horizontal ground in which PS = 43 m, PQ = 130 m, QR = 58 m, PR = 97 m, $\angle PRS = 26.3^{\circ}$ and $\angle RPS = 63^{\circ}$.

(a) Find angle PRQ.

Ånswer	0	[3]
		L J

(b) Calculate the area of the field PQRS.

Answer	m^2	[3]
1 AVID IVO	 	F. J

(c)	Calculate the shortest distance from S to PR .	
	Answer m [2]	
(d)	A pole is erected at S. T is the top of the pole. Given that the angle of	
	elevation of T from P is 3.9°, find the range of the angles of elevation of T	
	along the path PR .	
	Answer o to 5	
	Answer	
		-

3	(a)	The price of an iPad Air is \$1 299 in Singapore. The price of the same iPad Air in Japan is \(\frac{\pmathbf{1}}{104}\) 280. The exchange rate between Singapore dollars (\(\frac{\pmathbf{s}}{2}\)) and Japanese Yen (\(\frac{\pmathbf{y}}{2}\)) is \(\frac{\pmathbf{1}}{1} = \frac{\pmathbf{2}}{8}1.49. Where should you buy the iPad Air from?	
		I should buy the iPad Air from because	
	(b)	The price of a MacBook Air increased from \$999 in 2012 to \$1299 in 2020. The price increased by x % every year. Find the value of x .	[3]
		Answer $x = $	[2]

AMKSS 4E5N Prelim

4048/02/2021

PartnerInLearning
www.testpapes5ree.com

(c)	The table shows the sales of Apple's iPhone and the total revenue for 2019
	and 2020.

Year	2019	2020
Number of iPhone	187.2 million	196.9 million
Revenue from sale of iPhones	\$142 billion	\$138 billion
Total revenue from all Apple's products	\$260 billion	\$274 billion

(i)	Calculate how many more iPhones were sold in 2020 than in 2019
	Give your answer in standard form.

	Answer	[1]
(ii)	Calculate the percentage decrease in iPhone's revenue from 2019 to 2020.	

(iii) Calculate the percentage of Apple's total revenue that comes from the sales of iPhone in 2020.

Answer		%	[2]
--------	--	---	-----

Answer ______%

[2]

4 The variables x and y are connected by the equation

$$y = \frac{x^3}{2} + 3x - 5.$$

Some corresponding values of x and y are given in the table below.

х	-4	-3	-2	-1	0	1	2	3	4
у	-49	-27.5	-15	8.5	-5	-1.5	5	17.5	p

(a) Find the value of

Answer
$$p =$$
 [1]

- **(b)** On the grid opposite, draw the graph of $y = \frac{x^3}{2} + 3x 5$ for $-4 \le x \le 4$ [3]
- (c) Use your graph to write down an inequality in x to describe the range of values of where y > 10.

- (d) (i) On the same grid, draw the graph of 3y 29x + 5 = 0 for $-4 \le x \le 4$. [2]
 - (ii) Show that the points of intersection of the line and the curve give the solution of the equation $3x^3 40x 20 = 0$.

(iii) Use your graph to solve equation
$$3x^3 - 40x - 20 = 0$$
.

Answer
$$x =$$
 or or [2]

PartnerInLearning 288

www.testpapersfree.com

5	The f	irst thre	te terms in a sequence of numbers T_1 , T_2 , T_3 , are given below. $T_1 = 2 \times 1^2 + 2 = 4$ $T_2 = 2 \times 2^2 + 3 = 11$ $T_3 = 2 \times 3^2 + 4 = 22$	
	(a)	(i)	Write down the fourth line of the sequence.	
			Answer	[1]
		(ii)	Find an expression, in terms of n , for T_n .	
			Answer $T_n =$	[1]
		(iii)	Determine if 1175 can be one of the numbers in the sequence.	
		Ansv	ver	
		\$4,24664E		

		**!::::		

		.,		
				[2]

AMKSS 4E5N Prelim

4048/02/2021

The first four terms in another sequence are 2, 5, 8, 11.

(i)	Find an expression, in terms of n , for the n th term, S_n , of this sequence.	
·		
	Answer $S_n =$	[1]
(ii)	Find the 53 rd term of this sequence.	
	Answer	[1]

(b)

6 (a) In the diagram below, RUV is a tangent to the circle with centre O, angle $SRU = 50^{\circ}$ and PQS is a straight line.

(i)	Statir	ng your reasons clearly, find
	(a)	angle STU.

		Answer	411012100044,444441100114449444444444444444444	0	[1]
(b)	reflex angle POU,				

Answer	******************************	0	[2]

(c) angle PUO,

Answer	0	[1]

(d) angle PUR.

Answer	 O	[1]

AMKSS 4E5N Prelim

4048/02/2021

www.testpap29stree.com

(ii)	What can you say about the lines RS and PU? Explain.
An,	swer

is fo	the diagram below, $OPQR$ is a sector of a circle with centre O . The sector olded such that the centre O touches the arc PR at point Q . gle $TQS = 1.31$ radians, $PT = 1.8$ cm, $QT = 5.2$ cm and $RS = 3.1$ cm.
	1.8 cm 5.2 cm 3.1 cm
(i)	Find the length of arc PQR .
	Answer cm
(ii)	Find the area of the shaded region.

- A pond in an ecogarden contains 2500 litres of water.
 - (a) A large pump have a water supply of x litres per minute. Write down an expression, in terms of x, for the number of minutes the pump would take to fill up the pond.

Answar	min	[1]
Answer	111111	L .

(b) A small pump have a water supply of (x-10) litres per minute. Write down an expression, in terms of x, for the number of minutes the pump would take to fill up the pond.

Answer	min	[1]
1119 MC1	111111	L - J

(c) It takes 4 hours longer to fill up the pool using the small pump than it does using the large pump.

Write down an equation in x to represent this information, and show that it reduces to

$$6x^2 - 60x - 625 = 0$$
.

Answer

(d)	Solve the equation $6x^2 - 60x - 625 = 0$, giving your solutions correct to one decimal place.
	Answer $x = $ or [3]
(e)	Find the time taken for the 2 pumps to operate together to fill up the pond. Give your answer in hours and minutes correct to the nearest minute.
	Answer hr min [3]

AMKSS 4E5N Prelim

4048/02/2021

PartnerInLearning

294 www.testpapersfree.com

8 The diagram shows a building structure in the shape of a hemisphere on top of a cuboid.

The circumference of the base of the hemisphere touches the four edges of the top of the cuboid.

Point X is the highest point of the structure at the top of the hemisphere.

AB = 20 m and AE = 15 m.

(a) Find the height of the whole structure.

Answer	m	[1	ľ
		_	_

(b) Calculate the volume of the building structure.

Answer	m^3	[3]
Answer	 m ³	[3

AMKSS 4E5N Prelim

4048/02/2021

(c)	Calculate the surface area of t	the building structure.	
		Answer m ²	[3]
(d)	Find angle XAC.		
(-)			
		•	
		Answer°	[3]

AMKSS 4E5N Prelim

4048/02/2021

[Turn Over

9 (a) The pie chart below shows the distribution of score for 40 students in a quiz. A student can score a minimum of 0 and a maximum of 5 in the quiz.

Quiz Score

(i) Find the number of students getting the score of 3.

Answer		[]	1	l
	\$11004KX1-1-41400GX1CD0L140KAL11KCL10b4.xr4p4ekg)xueraus	_	-	-

(ii) Find the median score for the quiz.

Answer [1]

(iii) Find the range of score for the quiz.

Answer [1]

(iv) Find the interquartile range of the score for the quiz.

Answer [1]

AMKSS 4E5N Prelim

4048/02/2021

PartnerInLearning
www.testpa

A box contains some green and some red cards. Each card comes with a picture of a living thing or a non-living thing.
 The table below shows the probabilities of drawing a card at random from the box

	Green	Red
Living thing	$\frac{1}{12}$	$\frac{1}{3}$
Non-living thing	$\frac{1}{4}$	m

(i) Find the value of m.

Answer	m =	[1]	l
		L]	

(ii) Given that there are 60 cards in the box, how many cards with a picture of a non-living thing should be removed so that there is an equal probability of drawing a card with a living or non-living thing from the box.

Answer	***************************************	[2]
--------	---	-----

A disposable plastic cup can be represented by a right frustum which is a parallel truncation of a right cone as shown in the diagram below. The cup has a diameter of 84 mm at the top, a diameter of 60 mm at the bottom and a height of 165 mm.

(a) Show that the plastic cup has a volume of 678019 mm³.

Answer

(b) Bubbles Bubble Tea sells beverages using disposable cup of two sizes. The dimensions of the cups are given in the table below.

The material cost for manufacturing the cups are given in the table below. The minimum thickness of a plastic cup is 0.25 mm for the manufacturing of the whole cup.

The minimum thickness of a paper cup is 0.35 mm for the side of the cup and 0.70 mm for the bottom of the cup.

Size	Top diameter	Bottom diameter	Height of cup	Selling Price of beverage
Regular	84 mm	70 mm	130 mm	\$5.00
Large	84 mm	60 mm	165 mm	\$6.50

Material	Thickness (mm)	Cost per m ² (\$)
Paper	0.35	\$0.62
Plastic	0.25	\$0.65

The shop needs 1500 large cups each week. Given that the cost of material for 1500 large plastic cups is \$39.24, which material should the shop use for the manufacturing the cups?

AMKSS 4E5N Prelim

Answer	The snop should use	10r manufacturing	
the cups b	pecause		

			[8]

END OF PAPER

AMKSS 4E5N Prelim

4048/02/2021

PartnerInLearning www.testpa303free.com

1 AMKSS 2021 Prelim 4E5N EM P1 Answer Scheme

	Answer	Marks
1 (a)	$\left(\frac{3}{x}\right)^{-2} = \frac{x^2}{9}$	B1
1(b)	$3^{y} \times 4^{y} = 12^{5-y}$ $12^{y} = 12^{5-y}$ $y = 5 - y$ $2y = 5$	M1 (change to same base)
	y = 2.5	A1
2	$2x-3<\frac{2}{3}(9x-6)$	
	$2x-3 < 6x-4$ $-4x < -1$ $x > \frac{1}{4}$	M1 A1
	Smallest possible value of $x = 2$.	B1 (no mark if inequality is wrong)
3(a)	$AB = \sqrt{(5-7)^2 + (-3-2)^2}$ = 5.385164807 = 5.39 units (3sf)	M1 A1
3(b)	Gradient of AB $\frac{2-(-3)}{7-5} = \frac{5}{2}$ 2y = hx - k $y = \frac{h}{2}x - \frac{k}{2}$	M1
	$ \begin{array}{c c} $	A1 A1
4	$2 - \frac{3a - b}{a + b}$ $= \frac{2(a + b) - (3a - b)}{a + b}$ $= \frac{2a + 2b - 3a + b}{a + b}$ $= \frac{-a + 3b}{a + b}$	M1 (combine into single fraction)
5	Maximum increase = 531499 - 279350 = 252149	M1 (for either 531 499 or 279 350) A1

	Answer	Marks
6	x-4y=17(1)	
	$2x+3y=1 \dots (2)$	
	From (1): $x = 4y + 17$ (3)	
	Subs. (3) into (2):	
	2(4y+17)+3y=1	M1 (substitution or
	8y + 34 + 3y = 1	elimination)
	11y = -33	
	y = -3	A1
	x = 4(-3) + 17 = 5	Al
7	No because the scale for the vertical axis is inconsistent.	B1
•	It gives the impression that there is comparable growth in	
	sales of the 2 gaming consoles.	
8(a)	Emily calculated the probability without replacement. It	B1 (need to mention
	should be $\frac{8}{11} \times \frac{8}{11} = \frac{64}{121}$.	without replacement or explain Emily should not
	11 11 121	reduce 1 from the total
		since there is
		replacement)
8(b)	P(at least 1 yellow)	
	$= 1 - \left(\frac{3}{11} \times \frac{3}{11}\right) \qquad \text{accept } 2\left(\frac{3}{11} \times \frac{8}{11}\right) + \frac{8}{11} \times \frac{8}{11}$	M1
	$= \frac{112}{121}$ $x = \frac{k}{\sqrt[3]{y}}$	A1
9	k	
	$x = \frac{1}{\sqrt[3]{y}}$	
	When $x=6$, $y=a$	
	$6 = \frac{k}{\sqrt[3]{a}}$	
	$\delta = \frac{1}{\sqrt[3]{a}}$	
	$k = 6\sqrt[3]{a}$	
	When $y = \frac{12.5}{100}a = \frac{1}{8}a$ $x = \frac{6\sqrt[3]{a}}{\sqrt[3]{\frac{1}{8}a}}$ $= \frac{6\sqrt[3]{a}}{\frac{1}{2}\sqrt[3]{a}}$	
	$\frac{\sqrt{100}}{2} \frac{100}{100} \frac{100}{8} \frac{100}{8}$	
	$r = \frac{6\sqrt[3]{a}}{a}$	
	$\sqrt{\frac{1}{3}\left(\frac{1}{1-\alpha}\right)}$	
	V8"	
	$-\frac{6\sqrt[3]{a}}{a}$	
	$-\frac{1}{1}\frac{\sqrt[3]{a}}{\sqrt[3]{a}}$	M1
	2 ***	A1
10	=12	111
10	$x\% \rightarrow \$y$	
	$1\% \to \$\frac{y}{x}$	M1
	$ \begin{array}{c} 1\% \to \$ \frac{y}{x} \\ 100\% \to \$ \frac{100y}{x} \end{array} $	A1 (or B2)
-,		<u> </u>

	Answer	Marks
11	BD 4	M1
	$\sqrt{7.5} = \frac{1}{5}$	
	BD = 6 cm	
	$ED = \sqrt{7.5^2 - 6^2} = 4.5 \text{ cm}$	Al
12	Before: 18:7 = 54:21 After: 17:3 = 119:21	
	After: 17:3 = 119:21	M1 (change to
	$65 \text{ units} \rightarrow 1.3 \text{ litres}$	equivalent ratios)
	21 litres $\rightarrow \frac{1.3}{65} \times 21 = 0.42$ litres	M1
	65	A1
13(a)	$2^2 \times 3^2 \times 5$	B1
13(b)	Smallest perfect square = $2^4 \times 3^4 \times 5^2$	
	$pq = 2^2 \times 3^2 \times 5$	
	$= (2^2 \times 3) \times (3 \times 5)$	
	=12×15	
	p=12	D1
	q = 15	B1 B1
14(a)	D	B1
14(b)	c	B1
14(c)		B1
15(a)	bearing of Q from B	
	$=180^{\circ}+50^{\circ}$ (alternate \angle s)	7.1
	= 230°	B1
15(b)	$\angle ACE = 180^{\circ} - 137^{\circ} = 43^{\circ}$ (adj \angle s on str. line)	M1
	$\angle DEA = 360^{\circ} - (180^{\circ} - 50^{\circ} - 43^{\circ})$	
	= 273° (\(\s \) at a point)	A1
16(a)	6 = -(0-3)(2(0)+b)	
	6=3b	
	b=2	B1
16(b)	(3, 0)	B1
16(c)	-(x-3)(2x+2)=0	
	x=3 or $x=-1$	
	Line of symmetry is $x = \frac{3 + (-1)}{2} = 1$	M1
	y = -(1-3)(2(1)+2)=8	A1

	Answer 4	Marks
17(a)	(2)	
	Q = x	B1
150\		
17(b)	$R = \begin{pmatrix} 85 & 42 & 16 \\ 90 & 65 & 28 \end{pmatrix} \begin{pmatrix} 2 \\ x \\ 8 \end{pmatrix}$	
	$R = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 65 & 28 \end{bmatrix} x$	
	(8)	
	$= \begin{pmatrix} 298 + 42x \\ 404 + 65x \end{pmatrix}$	
	$= \frac{1}{404 + 65x}$	B2 (or M1, A1)
17(a)	298 + 42x + 232.50 = 404 + 65x	
17(c)		
	23x = 126.50	
	x = 5.50	B1
18(a)	60 min	B1
18(b)	53 min	B1
18(c)	43	B1
18(d)	Mean remains the same / No change to the mean	B1
19(a)	1112 0800 to 1900	B1 B1
19(b) 19(c)	<u> </u>	M1
15(0)	$=(10-2.6)\times 2000000$	1411
	=14800000 mg	
	=14.8 kg	A1
20	Sum of interior angles of hexagon $(6-2)\times180 = 720^{\circ}$	M1 (correct sum of int.
	$2x + 4y = 720^{\circ}$	angles of hexagon)
	$x + 2y = 360^{\circ}$	
	Yes, it is possible to put 3 sides adjacent to one another.	A1
21(a)(i)	{1, 3, 5, 7, 11, 13, 15}	B1
21(a)(ii)	0	B1
21(b)	ε	B1 (for $D \subset C$)
	E	B1 (for correct E)
	$\bigcap_{D} \bigcap_{k} \bigcap_{k$	No mark if not labelled.
	c(())	
	OR	
	3	
	E	

	Answer	Marks
22(a)	Let h be height of the upper tier.	•
	$\frac{h}{10.5} = \frac{2x}{3x}$	3.61
	I	M1
	h = 7 The initial to $7 + 10.5 = 17.5$ cm	A1
22(b)	Total height = $7 + 10.5 = 17.5$ cm.	
22(0)	$\left(\frac{2}{3}\right)^3 = \frac{8}{27}$	M1 (find ratio of
		volume)
	$35 \text{ units} \rightarrow 1.4 \text{ kg}$	
	27 units $\to \frac{27}{35} \times 1.4 = 1.08 \text{ kg}$	
	35	<u>A1</u>
23(a)	GFA of 1 level = $(3 \times 15) \times (8 \times 15) = 5400 \text{ m}^2$	M1
	Total GFA = $5400 \times 6 = 32400 \text{ m}^2$	A1
	OR	
	GFA of 1 level = $(3 \times 15) \times (8.1 \times 15) = 5467.5 \text{ m}^2$	
	Total GFA = $5467.5 \times 6 = 32805 \text{ m}^2$	
23(b)	Decrease in number $=\frac{32400}{32400}$	
	10 16	M1
	=1215	A1
ii.	OR 22905 22905	
	Decrease in number $=\frac{32805}{10} - \frac{32805}{16}$	
	=1230.1875 (accept 1230 or 1231)	
24(a)	$\frac{12xy - 5 + 20x - 3y}{12xy - 5 + 20x - 3y}$	
()	=12xy+20x-3y-5	
	=4x(3y+5)-(3y+5)	M1
	=(3y+5)(4x-1)	
0.4/1.)(1)		Al
24(b)(i)	Area of each side of cube $6.7^{2} + 48.7^{2} + 0.65^{2}$	
	$=\frac{6a^2-48ab+96b^2}{6}$	
	$= a^2 - 8ab + 16b^2$	N/1
		M1
	$=(a-4b)^2$	
	Length of each side = $(a-4b)$ cm.	A1
24(b)(ii)	$(a-4b)^3 = ((7)-4(1))^3$	
	$= 27 \text{cm}^3$	P1 (must yes (i))
25(a)		B1 (must use (i))
23(a)	$\frac{AB}{BD} = \frac{6.75}{9} = \frac{3}{4}$	
	$\frac{BD}{DC} = \frac{9}{12} = \frac{3}{4}$	M1 (show equal ratio)
	$\frac{AB}{BD} = \frac{BD}{DC}$	
	$\angle ABD = \angle BDC \text{ (alternate angles)}$	M1 (for angle)
	Triangle ABD is similar to Triangle BDC (Ratios of 2 pairs	A1
	of corresponding side and included angle equal)	

6

	Answer	Marks
25(b)	BC 4	
	$\left {AD} \right = {3}$	
	<i>BC</i> 4	
	$\frac{13.5}{3} = \frac{1}{3}$	
	BC = 18 cm	M1 (correct length of BC)
	Perimeter = $6.75 + 18 + 12 + 13.5 = 50.25$ cm	A1 `

AMKSS 2021 Prelim 4E5N EM P2 Answer Scheme

Qn	Solutions	Marks	Remarks
la	$\frac{\left(3ab\right)^{2}}{3} \div \frac{2a}{b^{0}}$		
	$\frac{9a^2b^2}{3} \times \frac{1}{2a}$		Array de la constanta de la co
		M1	
	$\frac{3ab^2}{2}$	A1	
1bi	0.5345224838 = 0.535	B1	
1bii	$a = \sqrt{\frac{b + 2c}{3 - b}}$		Do not except if students
	$a^2 = \frac{b + 2c}{3 - b}$	M1	did not state
	$3a^2 - a^2b = b + 2c$		<i>b</i> =
	$3a^2 - 2c = b + a^2b$	M1	
	$b(1+a^2) = 3a^2 - 2c$		
	$b = \frac{3a^2 - 2c}{1 + a^2} \text{ or } b = \frac{2c - 3a^2}{-1 - a^2}$	A1	
1ci	$x^2 - 5x + 9$		
	$= x^2 - 5x + \left(\frac{-5}{2}\right)^2 + 9 - \left(\frac{-5}{2}\right)^2$	M1	ļ
	$=\left(x-\frac{5}{2}\right)^2+\frac{11}{4}$		
	$=\frac{11}{4}+\left(-\frac{5}{2}+x\right)^2$	A1 or B2	
1cii	9 (2.5,2.75)	min pt and shape B1	
		y- intercept B1	The state of the s
1ciii	x = 2.5	B1	
			11

2a	$130^2 = 97^2 + 58^2 - 2(97)(58)\cos \angle PRQ$	M1	
i	$-11252\cos \angle PRQ = 4127$		
	4127	M1	
	$\cos \angle PRQ = -\frac{4127}{11252}$		
	$\angle PRQ = 111.5171212^{\circ}$	1.1	
	$\angle PRQ = 111.5^{\circ}$	A1	
	OR		
	$\cos \angle PRQ = \frac{97^2 + 58^2 - 130^2}{2(97)(58)}$	3.44	
	2(97)(58)	M1	
	$\cos \angle PRQ = -\frac{4127}{11252}$		
		M1	
	$\angle PRQ = 111.5171212^{\circ}$	A 1	
01	∠PRQ = 111.5°	AI	
2b	Area $= 0.5(97)(58) \sin 111.5 + 0.5(97)(43) \sin 63$	M1 + M1	
	= 2616.956426 + 1858.194106	1411 1 1411	
	= 4475.150533 (based on 111.5171212)	ļ	
	= 4475.458725 (based on 111.5) = 4480	A1	
2c	$0.5 \times 97 \times h = 1858.194106$	M1	
	h = 38.31328054 = 38.3	A1	
	OR	241	
	$ \sin 63^\circ = h \div 43 h = 38.31328054 = 38.3 $	M1 A1	
2d	$\tan 3.9^\circ = \frac{ST}{43}$		
	$\tan 3.9^{\circ} = \frac{1}{43}$	241	
	ST = 2.93144591	M1	
	SR = 43		
	$\frac{1}{\sin 63} = \frac{1}{\sin 26.3}$		
	SR = 86.47206439	M1	
	SR = 86.43385477 (using cosine rule)		
	$\tan \theta_{\min} = \frac{2.93144591}{86.47206439}$	M1	
	$\theta_{\min} = 1.941611802^{\circ} (1.942469468^{\circ})$ 2.03144501		
	$\tan \theta_{\text{max}} = \frac{2.93144591}{38.31328054}$	M1	
	$\theta_{\text{max}} = 4.375320211$		
	1.9° to 4.4°	A1	
			13
	AE/EN Desline A048/02/2021		Solutions

AMKSS 4E/5N Prelim

4048/02/2021

Solutions

3a	Japan ¥:		Must state
	\$1 = \frac{1}{2} \text{81.49}		cheaper
	$1299 = 81.49 \times 1299 = 105855.51$		by how
	Singapore \$:	M1	much
	\$81.49 = \$1		
	$\$104280 = 1 \div 81.49 \times 104280 = \1279.67		
	Buy from Japan	A1	
	Cheaper by		
	¥1575.51	A1	
	\$19.33	3.61	
3b	$999 \left(1 + \frac{x}{100}\right)^8 = 1299$	M1	
	$\left(1 + \frac{x}{100}\right)^8 = \frac{1299}{999}$		
	$1 + \frac{x}{100} = \sqrt[8]{\frac{1299}{999}}$		
	$1 + \frac{x}{100} = 1.033369069$		
		Al	
	x = 3.336906861 = 3.34		
3ci	$196.9 \times 10^6 - 187.2 \times 10^6$ $= 9.7 \times 10^6$	B1	
3cii		M1	
JUII	$\frac{142-138}{142} \times 100$	IVII	
	= 2.816901408 = 2.82%	A1	
3ciii	130	M1	1
	$\frac{138}{274} \times 100$		
	= 50.36496358 = 50.4%	A1	
	= 30.30490338 = 30.478		10
4a	p = 39	B1	+
4b	Points, Curve passes through all points, Smooth curve	B1,B1,B1	See graph
4c	x > 2.5 (2.4 to 2.6)	B1	Boo graph
4di	Draw straight line	B2	See graph
4dii	3y - 29x + 5 = 0	_ 	Br-
	3y = 29x - 5		
	$y = \frac{29}{3}x - \frac{5}{3}$		
	$\frac{29}{3}x - \frac{5}{3} = \frac{x^3}{2} + 3x - 5$		
	$\frac{1}{3}x - \frac{1}{3} = \frac{1}{2} + 3x - 3$	M1	
	$58x - 10 = 3x^3 + 18x - 30$		
	$3x^3 + 18x - 58x - 30 + 10 = 0$	A1	
	$3x^3 - 40x - 20 = 0 \text{ (shown)}$		
4diii	3.75 to 3.95 (3.879652106)	2 correct	
	-0.6 to -0.4 (-0.5099456443)	B1	
	-3.45 to -3.25 (-3.369706462)	B2	
			11

5ai	$T_4 = 2 \times 4^2 + 5 = 37$	B1	
Jan	OR		
	$2 \times 4^2 + 5 = 37$	B1	
5aii	$T_n = 2 \times n^2 + (n+1) \text{ or } 2n^2 + n + 1$	B1	
5aiii	$2n^2 + n + 1 = 1175$		
Jan	$2n^2 + n - 1174 = 0$	ļ	
	n = 23.97937267	M1	
	Since n needs to be a positive integer, 1175 cannot be one	Al	
	of the numbers in the sequence	1	
5b	$S_n = 3n - 1$	B1	****
5c	158	B1	
30	130		6
6aia	$\angle STU = 180^{\circ} - 50^{\circ} = 130^{\circ} (\angle s \text{ in opps seg})$	B1	Minus 1
6aib	$\angle SQU = \angle SRU = 50^{\circ} \ (\angle s \text{ in same seg})$	M1	mark from
Oaio	$\angle POU = 180 - 50 = 130^{\circ} (\angle s \text{ in same seg})$	1411	whole
	· · · · · · · · · · · · · · · · · · ·		question if
	$\angle POU = 130^{\circ} \times 2 = 260^{\circ}$	A1	no reason
	$(\angle \text{ at ctr} = 2\angle \text{s at circumference})$	7.1.1	or wrong
6aic	$\angle POU = 360 - 260 = 100^{\circ}$	70.1	reason
	$\angle PUO = (180 - 100) \div 2 = 40^{\circ} \text{ (isos } \Delta PUO)$	B1	
6aid	$\angle PUR = 90 - 40 = 50^{\circ}$		
	(tangent perpendicular to radius)	B 1	
6aii	$\angle SRU = \angle PUR$ (alternate $\angle s$ of parallel lines)		
	RS and PU are parallel	B1	
6bi	Arc length $PQR = 1.31 \times 7$		
	Arc length $PQR = 9.17$	B1	
6bii	Area of sector = $0.5 \times 7^2 \times 1.31 = 32.095$	M1	
	Area of $\triangle QST = 0.5 \times 5.2 \times (7 - 3.1) \times \sin 1.31$		
	Area of $\triangle QST = 9.797115409$	M1	
	Area of shaded region		
	= 32.095 - 2(9.797115409)		
	$= 12.50076918 = 12.5 \text{ cm}^2$	A1	
			10
			A

AMKSS 4E/5N Prelim

4048/02/2021

Solutions

7a	2500	B1	
	x		
7b	2500	B 1	
	$\overline{x-10}$		
7c	$\frac{2500}{10} - \frac{2500}{10} = 4 \times 60$	M1	
	x-10 x		
	$\frac{2500}{100} - \frac{2500}{100} = 240$		
	x-10 x		
	2500(x)-2500(x-10)=240(x)(x-10)	M1	
	$2500x - 2500x + 25000 = 240x^2 - 2400x$		
	$240x^2 - 2400x - 25000 = 0$	M1	and the second s
	$6x^2 - 60x - 625 = 0$		
7d	$-(-60)+\sqrt{(-60)^2-4(6)(-625)}$		
	$x = \frac{-(-60) \pm \sqrt{(-60)^2 - 4(6)(-625)}}{2(6)}$		
	$x = \frac{60 \pm \sqrt{18600}}{12}$	M1	
	12		
1	x = 16.36515141, -6.365151414	M1 A1	
	x = 16.4, -6.4 (1 dp) L+S 1 min \rightarrow 16.36515141 + 6.36515141 <i>l</i>	- A1	
7e	L+S 1 min → 16.36515141 + 6.36515141 t	M1	
	1 $l \rightarrow 1 \div 22.73030283$		
	2500 <i>l</i> → 1 ÷ 22.73030283 × 2500	M1	
	Time taken → 109.9853363 min	A1	
	Time taken → 1 hour and 50 mins	Al	11
1			
			İ
		Lucina	

AMKS\$ 4E/5N Prelim

4048/02/2021

Solutions

8a	Radius of the hemisphere = 10 m		
oa		B1	
01-	Height of structure = $10 + 15 = 25 \text{ m}$	DI	
8b	Volume of hemisphere		
	$= \frac{1}{2} \times \frac{4}{3} \pi 10^3 = \frac{2000}{3} \pi = 2094.395102$		
	2 3 3 3	M 1	
	Volume of cuboid	* * *	
	$=20 \times 20 \times 15 = 6000$	M1	
	Volume = 2094.395102 + 6000		
	Volume = $8094.395102 = 8090 \text{ m}^3$	A1	
8c	SA of cuboid		
	$= 20 \times 20 + 4(20 \times 15) + [20 \times 20 - (\pi \times 10^2)]$		
	$=2000-100\pi$		
	= 1685.840735	M1	
	SA of hemisphere	1111	
	$= 0.5 \times 4 \times \pi \times 10^2$		
ĺ	$=200\pi$		
	= 628.3185307	M1	
	Total SA	IVII	
	= 1685.840735 + 628.3185307		
	= 2314.159265	A 1	
0.1	$= 2310 \text{ m}^2$	A1	
8d	$AC^2 = 20^2 + 20^2$	3.55	
	$AC = \sqrt{800} = 28.28427125$	M1	
	$\tan \theta = \frac{25}{\sqrt{800} \div 2}$	M1	
	$\sqrt{800} \div 2$		
	$\theta = 60.5037915 = 60.5^{\circ}$	A1	
			10
9ai	$30 \div 100 \times 40 = 12$	B1	
9aii	Median = 3	B1	
9aiii	Range = $5 - 0 = 5$	B1	
9aiv	Interquartile range $= 4 - 2 = 2$	B1	
9817	Interquartie range – 4 – 2 – 2		-
9bi	$\begin{vmatrix} 1 - \frac{1}{4} - \frac{1}{4} - \frac{1}{4} = \frac{1}{4} \end{vmatrix}$	B 1	
	$1 - \frac{1}{12} - \frac{1}{4} - \frac{1}{3} = \frac{1}{3}$ $\left(\frac{1}{12} + \frac{1}{3}\right) = \left(\frac{1}{4} + \frac{1}{3}\right) - x$		
9bii	(1,1)(1,1)		
	$\left(\frac{1}{12} + \frac{1}{3} \right) = \left(\frac{1}{4} + \frac{1}{3} \right) - x$		
}		M1	
[$x=\frac{1}{6}$		
	6		
	1,,60, 10		
	$\frac{1}{6} \times 60 = 10$	A1	
	OR		
			ļ
	no. of living = $60\left(\frac{1}{12} + \frac{1}{3}\right) = 25$		
	(12 3)	M1	***************************************

	no. of non-living = $60(\frac{1}{4} + \frac{1}{3}) = 35$		**************************************
	(• •)	A1	Translation of the Control of the Co
	35 - 25 = 10		
			7

AMKSS 4E/5N Prelim 4048/02/2021 Solutions

10a	Let h = height of small cone		
	$\frac{h}{h} = \frac{60}{100}$	Ha1	
	h+165 84	1141	
	84h = 60h + 9900		
	h = 412.5	Ha2	
	Total height = $412.5 + 165 = 577.5$	паг	
	Volume of the cup		
	$= \left(\frac{1}{3}\pi \times 42^2 \times 577.5\right) - \left(\frac{1}{3}\pi \times 30^2 \times 412.5\right)$		
	$=339570\pi - 123750\pi$		
	=1066790.617 - 388772.0909		
	= 678018.5265 = 678019 (shown)	V1	
10a	Slant height _{Small} = $\sqrt{412.5^2 + 30^2}$		
	Slant height _{Small} = 413.5894704 mm	Ss1	
	Slant height _{Big} = $\sqrt{577.5^2 + 42^2}$		
	Slant height _{Big} = 579.0252585 mm	Sb1	
	SA of cone _{Small} = $\pi \times 30 \times 413.5894704$		
	SA of cone _{Small} = 38979.88925 mm^2	SAs1	
	SA of cone _{Big} = $\pi \times 42 \times 579.0252585$		
	SA of cone _{Big} = 76400.58293 mm^2	SAb1	
	SA of circle = $\pi \times 30^2 = 900\pi = 2827.433388 \text{ mm}^2$	}	
	$SA_{p_{aper}} = 76400.58293 - 38979.88925 + (2 \times 2827.433388)$	SAPa1	
	$SA_{Paper} = 37420.69368 + 5654.866776$		
	$SA_{Paper} = 43075.56046 \text{ mm}^2$		
	Paper sheets needed = $1500 \times \frac{43075.56046}{1000000}$	PaS1	
	Paper sheets needed = 64.61334069		
	Cost of Paper = $64.61334069 \times \$0.62$		
	Cost of Paper = $40.06027123 = 40.06	CPa1	
	OR		
	Cost of Paper = $65 \times \$0.62 = \40.30		
	Use <u>Plastic</u> because it is \$0.82 (\$1.06 if use 65 sheets of plastic) cheaper for the material cost.	A1	
			11

AMKSS 4E/5N Prelim 4048/02/2021 Solutions