4Exp E Math Prelim 2022 Paper 1 Marking Scheme

	M	4	feo	WER
--	---	---	-----	-----

r =		11/11/11
Qn	Solution	Mark
1a	$\left(-a^2\right)^3 \div 4b^6 = -a^6 \div 4$	B1 for -a ⁶
	<u> </u>	Aí
	$=-\frac{1}{A}a^{6}$	TI
1b	(-3x) ² (5\ ³ -2x2 - \frac{3}{2}	3
	$(a^{-1}b)^{3} \times (\sqrt{b})^{3} = a^{-2}b^{2} \times b^{\frac{3}{2}}$	B1 for $a^{-2}b^2$ or $b^{\overline{2}}$
	*=	
	$=\frac{b^{\frac{7}{2}}}{a^2}$	Ai
ĺ	a ² -	
2	The vertical axis does not start from zero.	B1
_	The Vertical and about the state than 2210.	
	The increase in the number of years on the horizontal	R1
	axis is not a constant.	Ignore any subsequent explanations
		given by students
3a	2.5014×10° cm³	B1 (exact ans only)
] "	2.3014×10 Cm	Da (Carol ens only)
3b	Time needed	their (a)
	2.5014×10°	M1 for $\frac{\text{their (a)}}{(8 \times 10^2 + 1.2 \times 10^3) \times 1000}$
	$= {(8 \times 10^2 + 1.2 \times 10^3) \times 1000}$, 5.2
	=1250.7 minutes	Al (exact ans only)
4	$y = ka^{-s}$	
	$3 = ka^{-6}$	
	k=3	B1
	6 = 3(a²)	
	The state of the s	To .
	a=2	B1
5a	$1400 = 2^3 \times 5^2 \times 7$	BI
Figure 1	140-2 23 22	
5ъ	Not all the index / power of the prime factors of 1400	B1
	are even numbers.	
5c	a = 5	D.
عر ا	~	B1 B1
	b = 7	13.1
ĺ		
<u> </u>	<u> </u>	

- 3	, , , 3	
	Area = 4 cm^2 : 2.56 km ²	251 C C V and and in in our
	Length = $2 \text{ cm} : 1.6 \text{ km}$	M1 for finding length ratio in any
	= 1 cm : 0.8 km	units
	= 1:80000	A1
5b	Actual distance = 16 km	B1
7a	$A = \{1, 2, 3, 4\}$	
	$B = \{2, 3, 5, 7, 11\}$	
	$A \cap B' = \{1, 4\}$	B1
7b	ξ	B1
3	$M = kr^3$	
	$k = \frac{M}{r^3}$	
	$\operatorname{new} M = k(\operatorname{new} r)^3$	
	$8M = \frac{M}{r^3} (\text{new } r)^3$	M1 for relationship between new
		and old sets of values of M and r
i	$(\text{new } r)^3 = 8r^3$	
	new r = 2r	A1
	% increase in $r = 100%$	Al
	OR	
	$M_1 - M_2$	
	$\frac{M_1}{(r_1)^3} = \frac{M_2}{(r_2)^3}$	
:	M_1 $8M_1$	M1 for relationship between new
	$\frac{M_1}{(r_1)^3} = \frac{8M_1}{(r_2)^3}$	and old sets of values of M and r
	$r_2 = 2r_1$	A 1
	% increase in $r = 100\%$	A1
9	$(h)^3$ 1	M1 for relationship between heigh
	$\left(\frac{h}{45}\right)^3 = \frac{1}{2}$	ratio and volume ratio
	h = 35.716	
	h = 35.7 cm (3sf)	A1
		·
	$x^2 - 4x + 8 = (x - 2)^2 - 2^2 + 8$	
10ai	$= (x-2)^2 + 4$	B1

	3	
10aii	The minimum value of $x^2 - 4x + 8$ is bigger than 0.	B1
	OR The minimum turning point of $y = x^2 - 4x + 8$ is (2,4) which is above the x-axis. Hence, graph of $y = x^2 - 4x + 8$ does not intersect the x-axis.	
	OR	
	OR When $(x-2)^2 + 4 = 0$, $(x-2)^2 = -4$. But $(x-2)^2$ cannot be negative and hence, the graph of $y = x^2 - 4x + 8$ does not intersect the x-axis.	
10b	10	By for furning point (-1, 16) B1 for x-intercepts at -5 and 3; and y-intercept at 15 B1 for correct shape of curve passing through their turning point and intercepts with their axes
11	$x^{2}-8xy+16y^{2} = 0$ $(x-4y)^{2} = 0$ $x-4y=0$ $x = 4y$ $\frac{x}{2} = 4$	B1 for $(x-4y)^2$
	$\frac{-}{y}$	A1

12a	$\frac{AE}{AC} = \frac{7}{14} = \frac{1}{2} \text{ (given)}$ $\frac{AB}{AD} = \frac{10}{20} = \frac{1}{2} \text{ (given)}$ $\angle CAD = \angle EAB \text{ (common)}$ $ACD \text{ similar to } AEB \text{ (SAS)}$	M1 for showing $\frac{AE}{AC} = \frac{AB}{AD}$ (given) - accept if length ratio of $\frac{1}{2}$ not mentioned A1 for complete proof, reasons and conclusion
12b	$AF = \frac{1}{4} \times 10 = 2.5 \text{ cm}$	B1
13a	a = 52 $b = 58$ $c = 74$	B1 B1 B1
13b	58	B1
13c	Every student's test score is used to calculate the standard deviation while the interquartile range is calculated using the lower and upper quartiles only.	B1
14a	$-2x^2 + x + 3 = (-x - 1)(2x - 3)$	B1 accept $-(x+1)(2x-3)$
14b	$8x^{3} - 18xy^{2} = 2x(4x^{2} - 9y^{2})$ $= 2x(2x - 3y)(2x + 3y)$	M1 for factorising 2x A1
15a		M1 for showing all 3 construction lines to draw angle bisector A1 for marking the point P
15b	050°	B1 (accept 049° to 051°)

16-	(200)	D1
16a	$\mathbf{B} = \begin{pmatrix} 300 \\ 500 \\ 1000 \end{pmatrix}$	B1
16b	$\mathbf{X} = \begin{pmatrix} 0.5 & 0.5 \end{pmatrix} \begin{pmatrix} 80 & 42 & 20 \\ 120 & 62 & 30 \end{pmatrix} \begin{pmatrix} 300 \\ 500 \\ 1000 \end{pmatrix}$	M1 for correct matrix multiplication of any 2 matrices
	$= (0.5 0.5) \binom{65000}{97000}$	
	=(81000)	A1 do not award for answer left as 81000
16c	The mean / average amount of money collected from the semi-final and the final football matches.	B1
	OR It represents half the total amount of money collected from the semi-final and the final football matches.	
	OR It represents the total amount of money collected from the semi-final and the final football matches if there is a 50% discount on all tickets.	
17	$\frac{(2n-2)\times180}{2n} = \frac{(n-2)\times180}{n} + 30$	M1 for forming relationship
	$\frac{2n}{2n} - \frac{1}{n} + 30$ $90(2n-2) = 180(n-2) + 30n$ $3(2n-2) = 6(n-2) + n$	M1 for changing to linear equation
	6n-6=6n-12+n	
W.W. 177	n=6	A1
18	$(2n-1)^2 + 3 = 4n^2 - 4n + 1 + 3$	
	$=4n^2-4n+4$	
	$=4(n^2-n+1)$	B1 for $4(n^2-n+1)$
	Since $n^2 - n + 1$ is an integer, $4(n^2 - n + 1)$ is a multiple of 4.	A1 for conclusion

19a	v = 20 5	M1 for forming relationship
174	$\frac{v-20}{80} = \frac{5}{25}$	
	v = 36	D1 6 26 / 44 20
	Speed at 20 sec = 36 m/s	B1 for 36 m/s at $t = 20$ sec
	$=\frac{0.036}{1/3600}$ km/h	
		A1 (
	=129.6 km/h	A1 (exact ans only)
19b	1 (100 + 20)(25)	M1 to find area under speed-time
	Distance = $\frac{1}{2}(100 + 20)(25)$	graph
	=1500 m	Al
19c	100-20 $k-20$	M1 for forming relationship between
	$\frac{100-20}{25} = 2 \times \frac{k-20}{62.5-25}$	deceleration in first 25sec and acceleration after 25sec
	$3.2 = \frac{4}{75}(k-20)$	
	k = 80	A1
	<i>x</i> = 00	
20a	PQ = PO + OQ	
	$ = \begin{pmatrix} -3 \\ 1 \end{pmatrix} + \begin{pmatrix} -5 \\ 5 \end{pmatrix} $	
		(8)
	$\begin{vmatrix} = \begin{pmatrix} -8 \\ 6 \end{pmatrix} \\ PQ = \sqrt{(-8)^2 + 6^2} \end{vmatrix}$	B1 for $PQ = \begin{pmatrix} -8 \\ 6 \end{pmatrix}$ or M1 for
	(6)	finding length of line segment PQ
	$ PQ = \sqrt{(-8)^2 + 6^2}$	
	=10	A1
20b	-1-5 3	
200	$m = \frac{-1-5}{3-(-5)} = -\frac{3}{4}$	
	1 3 (3) + 6	·
	$-1=-\frac{1}{4}(3)+c$	
	$-1 = -\frac{3}{4}(3) + c$ $c = \frac{5}{4}$	
	3 5	B1 for $y = -\frac{3}{4}x + \frac{5}{4}$
	$y = -\frac{3}{4}x + \frac{5}{4}$	
		Or M1 for applying $m_{PQ} = m_{PR}$
	Subs u = 0 r = 5	
	$\int Subs \ y = 0, x - \frac{\pi}{3}$	
	Subs $y = 0, x = \frac{5}{3}$ $R = (\frac{5}{3}, 0)$	A1
	3	
	OR	
-		

	$\overline{PQ} = \begin{pmatrix} -8 \\ 6 \end{pmatrix}$ $m = \frac{6}{-8} = -\frac{3}{4}$ $R(x,0) P(3,-1)$ $\frac{0 - (-1)}{x - 3} = -\frac{3}{4}$ $x = \frac{5}{3}$	M1 for forming relationship A1
	$R = (\frac{5}{3}, 0)$ OR $PR = kPO$	
	$OR - \begin{pmatrix} -3 \\ 1 \end{pmatrix} = k \begin{pmatrix} -8 \\ 6 \end{pmatrix}$ $OR = \begin{pmatrix} -8k + 3 \\ 6k - 1 \end{pmatrix}$	M1 for finding $k = \frac{1}{6}$
	$6k-1=0$ $k = \frac{1}{6}$ $OR = \begin{pmatrix} -8(\frac{1}{6}) + 3 \\ 0 \end{pmatrix} = \begin{pmatrix} \frac{5}{3} \\ 0 \end{pmatrix}$	A1
20c	$R = (\frac{5}{3}, 0)$ $S = (-3, 0)$	B1
:		
21	New BMI = $\frac{0.992m}{(1.02h)^2}$ = $0.95347 \left(\frac{m}{h^2}\right)$	M1 to express new BMI in terms of old BMI
	= 0.95347 (old BMI) % change = $\frac{0.95347 - 1}{1} \times 100\%$	B1 for 0.95347
	=-4.65% (3sf)	A1

22a	$x = 7 \times 5 = 35$ $y = 150 - 60 - 35 = 55$	B1 B1
22b	$\frac{n}{150+n} \times \frac{n}{150+n} = \frac{1}{256}$ $\frac{n^2}{22500+300n+n^2} = \frac{1}{256}$ $256n^2 = 22500+300n+n^2$ $255n^2 - 300n - 22500 = 0$ $17n^2 - 20n - 1500 = 0$	M1 for forming equation M1 for simplifying LHS into single fraction A1
22c	$17n^{2} - 20n - 1500 = 0$ $(17n + 150)(n - 10) = 0$ $n = -\frac{150}{17} \text{ (rej)}, \qquad n = 10$	M1 for factorisation or quadratic formula A1 (SC1 for $n = 10$ without working)
23a	$\tan \angle ABO = \frac{15}{8}$ $\angle ABO = 1.0808 \text{ rad (4 dp)}$	A1
23b	$\angle BAO = \pi - \frac{\pi}{2} - 1.0808$ = 0.48999 Area of unshaded $POB = \frac{1}{2}(15)(8) - \frac{1}{2}(15^2)(0.48999)$ 4.8761 Area of shaded region = $\frac{1}{2}(8^2)(1.0808) - 4.8761$ = 29.709 = 29.7 cm ² (3sf)	M1 to find area of sector APO or sector BOQ (accept if student converts angles to degrees to compute area) B1 for area of unshaded POB = 4.8761

2022 MF Mathematics Preliminary Examination Paper 2 Marking Scheme

(Qn	Solutions	Marks	
1	(a)			A01
		$\frac{(3x-y)}{(x+2y)} = \frac{1}{3}$	***************************************	
		3(3x-y) = x + 2y	4	
		9x - 3y = x + 2y		
		9x - x = 2y + 3y	M1	Group the like terms
		8x = 5y		together
		$\frac{x}{y} = \frac{5}{8}$		
		x: y = 5:8	A1	
1	(b)	$\left \frac{2-3x}{3} < \frac{2x-1}{6} \right $		AO1
		Multiply the inequality by 6		
		2(2-3x) < 2x-1		
		4-6x < 2x-1	M1	Form a linear
		-6x-2x<-1-4		inequality without
		-8x < -5		bracket
		$x > \frac{5}{9}$		
-,,-		$\frac{x}{8}$	A1	
1			ļ	
1	(c)	Method 1		AO2
}		$\left(\frac{1}{x} + \frac{1}{y^2} = \frac{1}{w-3}\right)$		
		$\frac{1}{y^2} = \frac{1}{w-3} - \frac{1}{x}$		
		1 x = (w-3)		:
		$\frac{1}{v^2} = \frac{w(w-3)r}{(w-3)r}$	M1	Combine 2 fractions
		1 r = w + 3		into a single fraction
		$\frac{1}{v^2} = \frac{x}{x(w-3)}$		
		x(w-3)	M1	Make y² be the subject
		$y^2 = \frac{x(x-y)}{x-w+3}$		
		$\sqrt{x(w-3)}$		
		$\frac{1}{y^2} = \frac{x - (w - 3)}{(w - 3)x}$ $\frac{1}{y^2} = \frac{x - w + 3}{x(w - 3)}$ $y^2 = \frac{x(w - 3)}{x - w + 3}$ $y = \pm \sqrt{\frac{x(w - 3)}{x - w + 3}}$	A1	
			-	
L				

•	1 (-)	Mathad 2		
1	(c)	Method 2 Multiply the equation by $xy^2(w-3)$:		
		1	M1	Form a non-fractional
		$y^{2}(w-3)+x(w-3)=xy^{2}$		equation
		$y^2(w-3)-xy^2=x(w-3)$		
		$y^2(w-3-x) = x(w-3)$		
		$y^2 = \frac{x(w-3)}{(w-3-x)}$	M1	Make y^2 be the subject
		(
		$y = \pm \sqrt{\frac{x(w-3)}{(w-3-x)}}$	A1	
		$y = \pm \sqrt{(w-3-x)}$		
				4.00
2	(a)	G . P.	M1	AO2
		Cost Price	141.1	For multiply $\frac{85}{100}$
		$=$ \$1288× $\frac{85}{100}$ × $\frac{100}{125}$	M1	For multiply $\frac{100}{125}$
		= \$875.84	A1	125
	 	4070.01		
2	(b)	Amount paid by instalment $=$ \$125 × 18 $=$ \$2250		AO1
		Amount borrowed = \$2388 - \$295 = \$2093	M1	For Total Interest
		Total Interest = $$2250 - $2093 = 157	IVI	For Total Interest
		$I = \frac{PRT}{100}$		
		$157 = \frac{2093 \times R \times \frac{18}{12}}{100}$		
		$157 = \frac{12}{100}$		
			M1-	For arithmetic
		$R = \frac{157 \times 100}{2093} \times \frac{12}{18}$		expression for R
		R = 5.00 (3s.f)	A1	
	-			
2	(c)	$\left(\begin{array}{c} r \end{array} \right)^n$		AO2
		$A = P\left(1 + \frac{r}{100}\right)^n \text{where } r = -x$		
		$(x)^4$		
		$1200 = 2000 \left(1 - \frac{x}{100}\right)^4$	M1	Forming equation in x
		$\left(1 - \frac{x}{100}\right)^4 = \frac{1200}{2000}$		
		$1-\frac{x}{100} = \left(\frac{12}{20}\right)^{\frac{1}{4}}$	M1	For taking 4th root on
				both sides of equation
		$r (12)^{\frac{1}{4}}$		
		$-\frac{x}{100} = \left(\frac{12}{20}\right)^{\frac{1}{4}} - 1$		
		$\frac{1}{2}$		
		$\frac{x}{100} = 1 - \left(\frac{12}{20}\right)^{\frac{1}{4}}$		
		100 (20)		
1	1			

				
		$x = \left[1 - \left(\frac{12}{20}\right)^{\frac{1}{4}}\right] \times 100$ $x = 11.9888$		
	-	x = 12.0 (3 s.f)	A1	
3	(a)	Total surface area $= \frac{1}{2} \times 4\pi \times 30^{2} + 2\pi \times 30 \times 70 + \pi \times 30^{2}$ $= 1800\pi + 4200\pi + 900\pi \text{ cm}^{2}$	M1 M1	AO1 For finding surface area of hemisphere For finding curved
		= $6900\pi \text{ cm}^2$ = 21676.989 cm^2 = 21700 cm^2 (3 s.f)	A1	surface area of cylinder
3	(b)	(i) Volume of water $= \frac{1}{2} \times \frac{4}{3} \pi \times 30^3 + \pi \times 30^2 \times 70 \text{ cm}^3$	M1	AO1 For volume of hemisphere OR
		$= 18000\pi + 63000\pi \text{ cm}^{3}$ $= 81000\pi \text{ cm}^{3}$ $= 81000\pi \div 1000 \text{ litres} (1 \text{ litre} = 1000 \text{ cm}^{3})$ $= 81\pi \text{ litres}$	M1	volume of cylinder For total volume in cm ³
		= 254.469 litres = 254 litres (3 s.f)	A1	
3	(b)	(ii) Time taken $= 81\pi \div 3$ seconds	M1	AO1
		= 84.823 seconds = 1 minutes 25 seconds	A1	
3	(b)	(iii) Volume of the bath $= 81000\pi \text{ cm}^{3}$		AO2
		$= \frac{81000\pi}{1000000} \text{ m}^3 (1\text{m} = 100\text{cm}, 1\text{m}^3 = 10000000\text{cm}^3)$ $= 0.254469 \text{ m}^3$) M1	For converting volume from cm³ to m³
		$l = \frac{1}{2}(0.4+0.6)\times0.3\times l = 0.254469$ $l = \frac{0.254469\times2}{0.3}$	M1	Forming equation to find <i>l</i> .
		0.3 l = 1.69646 m l = 1.70 m (3s.f)	A1	

4	(a)	Area of the parallelogram ABCD	<u> </u>	A01
7	(4)	$= 2 \times \frac{1}{2} \times 15 \times 8 \times \sin 50^{\circ}$		
		$=2\times -\times 15\times 8\times \sin 30^{\circ}$	M1	
		$= 91.9253 \text{ m}^2$		
		$= 91.9 \text{ m}^2 (3 \text{ s.f.})$	A1	
4	(b)	$\angle ABC = 180^{\circ} - 50^{\circ} = 130^{\circ} \text{ (int.} \angle s, AD \parallel BC)$		AO1
		By Cosine Rule,	M1	
		$AC^2 = 15^2 + 8^2 - 2 \times 15 \times 8 \times \cos 130^{\circ}$	117.7	
		$AC^2 = 443.269$	M1	
		AC = 21.0539 m	A1	
		$AC = 21.1 \mathrm{m} (3 \mathrm{s.f})$	111	401
4	(c)	$\angle ADC = 180^{\circ} - 50^{\circ} = 130^{\circ} \text{ (int. } \angle s, DC \parallel AB)$		A01
		By Sine Rule, $\sin \angle DAC = \sin 130^{\circ}$		
		$\frac{\sin 2DAC}{15} = \frac{\sin 130}{21.0539}$		
		$\sin \angle DAC = \frac{\sin 130^{\circ}}{21.0530} \times 15$	M1	Make sin ∠DAC be
		$\sin \angle DAC = \frac{1}{21.0539} \times 15$	1411	the subject
		$\angle DAC = 33.0775^{\circ}$		
		$\angle DAC = 33.1^{\circ} (1d.p)$	A1	
4	(d)	$\angle ACB = \angle DAC \ (alt. \angle s, AD \parallel BC)$		AO1
		$\angle ACB = 33.1^{\circ} (1 \text{ d.p})$	B1	
<u></u>		Bearing of A from $C = 180^{\circ} + 33.1^{\circ} = 213.1^{\circ}$ (Led.)	D1	AO1
4	(e)	$\tan 15^\circ = \frac{TB}{15}$		AUI
		$TB = 15 \times \tan 15^{\circ}$	M1	
		TB = 4.01923	A1	
	1.0	TB = 4.02 m (3 s.f) The smallest angle of $\theta = 15^{\circ}$ as A is farthest away from B.	111	AO2
4	(f)	The smallest angle of $\theta = \angle TEB$ as E is nearest to B.		1102
	į	33.0775° G		
		E		
		S _m		
		A B	M1	For finding shortest
		$\sin 33.0775^\circ = \frac{BE}{8}$	IVII	distance from B to AC
		$BE = 8 \times \sin 33.0775^{\circ} = 4.36618 \mathrm{m}$		
		<i>™</i> 17.	7.54	F - C. 1: - 4 4 4
		$\tan \angle TEB = \frac{4.01923}{4.36618}$	M1	For finding the greatest θ
		4.36618 ∠TEB = 42.6307°		
		$A2.6.$ (1dn) $E \longrightarrow B$	A1	
			A1	
		Hence $15^{\circ} \le \theta \le 42.6^{\circ}$	AI	
	ĺ			1

5	(a)	p = -3.7	B1	AO1
5	(b)	y = 3x		AO1
		0 1 2 3 4 5 6	B1	Mark the points Accurately
		/-2	B1	Draw the curve passes through all the marked points
		$y = 4 - 2x - \frac{5}{x}$ $y = -4$	B1	Smooth curve with correct shape
	angenegangen gebruik den der der den der	$y = -\frac{1}{5}x - 3$		
		-6		
5	(c)	5		AO2
)		$2x + \frac{5}{x} = 8$		AUZ
		$-2x - \frac{5}{x} = -8$		
		$4-2x-\frac{5}{x}=4-8$		
		$4-2x-\frac{5}{x}=-4$ Plot the line $y=-4$		
		From the graph, $x \approx 0.75$ or $x \approx 3.2$ (accepted: 0.65, 0.7, 0.8, 0.85, or 3.1, 3.15, 3.25, 3.3)	B1 B1	
5	(d)	Plot the line $y = 3x$ as guiding line From the graph, coordinates of A are $(1,-3)$	B1 B1	AO2

5	(a)	2.2	14100		AO2
5	(e)		14x + 10 = 0		
			le the equation by $(-2x)$:		
		$-\frac{3}{2}x$	$+7-\frac{5}{x}=0$		
		_	••		
			$-\frac{5}{x} = \frac{3}{2}x - 7$		
		Add	(4-2x) to both sides of the equation:		
		4 –	$2x - \frac{5}{x} = 4 - 2x + \frac{3}{2}x - 7$		
				M1	For forming the
		4-	$2x - \frac{5}{x} = -\frac{1}{2}x - 3$		equation
		Plot t	he line $y = -\frac{1}{2}x - 3$,	B1	For plotting the line
		From	the graph, the x-coordinates of the intersecting points		
		i	een the curve and the line are	A1	
		1	.85 or $x \approx 3.80$	A1	
		(acce	pted: 0.75, 0.8, 0.9, 0.95 or 3.7, 3.75, 3.85, 3.9)		
6	(0)	(i)	Area added on Day n		AO2
0	(a)	(U	=1+4(n-1)		
			=4n-3	B1	
6	(a)	(ii)	$4 \times 20 - 3 = 77$	B1	A01
	(a)	(iii)	Area Added $=4n-3$		AO3
			As n is a positive integer, $4n$ is always an even	B1	
			number. Subtracting odd number 3 from an even number will give us an odd number.	Di	
					AO2
6	(b)	(i)	Total area of pavement at Day 6 = $6 \times 11 = 66$	B1	AO2
6	(b)	(ii)	$n=1, A=1\times 1$		AO2
		`´	$n=2, A=2\times3$		
			$n=3, A=3\times5$		
			From observation,		
			$A = n \times (2n-1)$	M1	
			$A = 2n^2 - n$	A1	
6	(b)	(iii)	Method 1		AO3
			3 weeks = 21 days	M1	
			When $n = 21$, $A = 2 \times 21^2 - 21 = 861 \text{ m}^2$	1411	
			Yes, as 861 > 780, hence an area of 780 m ² can be completed in 3 weeks.	A1	
1		1			

	1		26.4.10	T	<u></u>
			Method 2		
			$2n^2 - n = 780$		
			$2n^2 - n - 780 = 0$		
			(2n+39)(n-20) = 0		
			n = -19.5 or $n = 20$		
			Yes, since it takes only 20 days to cover 780m ²	M1 A1	
		101	0.000 (/ / /	<u> </u>	
7	(a)		$O = 90^{\circ}$ (tangent \perp radius)	M1	AO1 M0 if the reason is
	:	∠GO	$A = 180^{\circ} - 90^{\circ} - 32^{\circ} \ (\angle \text{ sum of } \Delta)$ $= 58^{\circ}$	A1	wrong
	(b)	∠FC	CD=90° (rt∠ in semi-circle)	M1	AO2
			$CF = 106^{\circ} - 90^{\circ} = 16^{\circ}$	A1	M0 if the reason is wrong
	(c)	$\angle BD$	$F=16^{\circ}$ ($\angle s$ in same segment)		AO2
		∠FD.	$A = 58^{\circ} \div 2 = 29^{\circ}$ (\angle at centre = $2\angle$ at circumference)	M1	M0 if the reason is
		∠BD.	$A = 16^{\circ} + 29^{\circ} = 45^{\circ}$	A1	wrong
ļ	(d)	$\angle BA$	$D=180^{\circ}-106^{\circ}=74^{\circ}$ ($\angle s$ in opp.segments)	MI	AO2
		l	$A = 180^{\circ} - 74^{\circ} - 29^{\circ} = 77^{\circ} \ (\angle \text{sum of } \Delta)$	A1	M0 if the reason is wrong
8	(a)	(i)	(a) Median = 350 minutes	B1	AQT
Ť	1(4)	(-)	(b) Lower quartile = 300	101	801
1			Upper quartile = 400		
	ļ		Interquartile range = 400-300=100 minutes	B1	
8	(a)	(ii)	20% spent $\geq x$ minutes on social media in a week		AO2
			80% spent $< x$ minutes on social media in a week.		
			$\frac{80}{100} \times 60 = 48$ students	M1	
			100 From the graph 48 students arout < 420 minutes	1111	
			From the graph, 48 students spent $<$ 420 minutes Hence $x = 420$	A1	
8	(a)	(iii)	110100 00 1100		AO2
			50 Cumulative frequency 40 30 20 300 400 500 600 700	B1	Any curve with same median and gentler slope for IQR
	1	L	Time (minutes)		

(b)	(i)	(a) 8+30 38 19	B1	1 4 () 1
	(1)	(a) $\left \frac{8+30}{240} = \frac{38}{240} = \frac{19}{120} \right $		AO1
		(b) $\frac{5+40}{240} = \frac{45}{240} = \frac{3}{16}$	B1	AO1
(b)	(ii)	P(at least one of them spent $\le 40 \text{ minutes}$) $= 1 - P(\text{none of them spent} \le 40 \text{ minutes})$ $= 1 - P(\text{both of them spent} > 40 \text{ minutes})$ $= 1 - \frac{240 - 15 - 8}{240} \times \frac{240 - 15 - 8 - 1}{240 - 1}$ $= 1 - \frac{217}{240} \times \frac{216}{239}$ $= \frac{437}{2390}$	M1	AO2
		23)0		
(a)	15 cm	Let the unshaded region be Z. Area $X = \text{Area } Y + 12$ Area $X + \text{Area } Z = \text{Area } Y + \text{Area } Z + 12$ Area of $ABCD = \text{Area of } ADE + 12$ $AB \times 15 = \frac{1}{2} \times 8 \times 15 + 12$ $AB \times 15 = 72$ $AB \times 15 = 72$ $AB = 4.8 \text{ cm}$	MH MH A1	40 2
			Ī	1.00
(b)	(i)	$OC = OA + AC$ $= OA + \frac{2}{3}AB$ $= OA + \frac{2}{3}(AO + OB)$ $= a + \frac{2}{3}(-a + b)$ $= \frac{1}{3}a + \frac{2}{3}b$	M1	AO2
		$-\frac{3}{3}u + \frac{3}{3}v$		
(b)	(ii)	$CD = CO + OD$ $= -OC + \frac{5}{3}OB$ $= -\left(\frac{1}{3}a + \frac{2}{3}b\right) + \frac{5}{3}b$ $= -\frac{1}{3}a + b$	M1	AO2
	(a)	(a) A (ii) (b) (i) (b) (i)	(b) (ii) $P(\text{ at least one of them spent} \le 40 \text{ minutes})$ $= 1 - P(\text{none of them spent} \le 40 \text{ minutes})$ $= 1 - P(\text{both of them spent} > 40 \text{ minutes})$ $= 1 - P(\text{both of them spent} > 40 \text{ minutes})$ $= 1 - \frac{240 - 15 - 8}{240} \times \frac{240 - 15 - 8 - 1}{240 - 1}$ $= 1 - \frac{217}{240} \times \frac{216}{239}$ $= \frac{437}{2390}$ (a) Let the unshaded region be Z . Area $X = \text{Area } Y + 12$ Area of $ABCD = \text{Area of } ADE + 12$ Area of $ABCD = \text{Area of } ADE + 12$ AB×15 = $\frac{1}{2} \times 8 \times 15 + 12$ AB×15 = 72 AB = 4.8 cm (b) (i) $OC = OA + AC$ $= OA + \frac{2}{3}AB$ $= OA + \frac{2}{3}(AO + OB)$ $= a + \frac{2}{3}(-a + b)$ $= \frac{1}{3}a + \frac{2}{3}b$ (b) (ii) $CD = CO + OD$ $= -OC + \frac{5}{3}OB$ $= -\left(\frac{1}{3}a + \frac{2}{3}b\right) + \frac{5}{3}b$	(b) (ii) $P($ at least one of themspent ≤ 40 minutes $)$ $= 1-P($ none of themspent ≤ 40 minutes $)$ $= 1-P($ both of them spent > 40 minutes $)$ $= 1-P($ both of them spent > 40 minutes $)$ $= 1-\frac{240-15-8}{240} \times \frac{240-15-8-1}{240-1}$ $= 1-\frac{217}{240} \times \frac{216}{239}$ $= \frac{437}{2390}$ (a) $A = \frac{437}{2390}$ (b) (i) $A = \frac{437}{2390}$ (c) $A = \frac{437}{2390}$ (d) $A = \frac{437}{2390}$ (e) $A = \frac{437}{2390}$ (f) $A = \frac{437}{2390}$ (g) $A = \frac{437}{2390}$ (h) $A = \frac{437}{2390}$ (h) $A = \frac{437}{2390}$ (h) $A = \frac{437}{2390}$ (o) $A = \frac{437}{2300}$

	T		1		AO3
9	(b)	(iii)	From (ii) $\overrightarrow{CD} = -\frac{1}{3} \underline{a} + \underline{b}$		AO3
			$\overrightarrow{EC} = \overrightarrow{EO} + \overrightarrow{OC}$		
			$=-\frac{5}{9}\underline{a}+\left(\frac{1}{3}\underline{a}+\frac{2}{3}\underline{b}\right)$		
			· · ·		
			$\overrightarrow{EC} = -\frac{2}{9}a + \frac{2}{3}b$	M1	For finding \overline{EC}
					_
			EC = 2(1, 1)		
			$EC = \frac{2}{3} \left(-\frac{1}{3}a + b \right)$		
			$EC = \frac{2}{3}CD$	M1	For connecting
					EC and CD by a scaler
			\Rightarrow EC is parallel to CD and C is the common point \Rightarrow D, C and E are collinear.	A1	
		(iv)	area of $\triangle OEC$		AO2
	<u>:</u>		area of $\triangle OCD$		
			$= \frac{EC}{CD}$ $= \frac{2}{3}$		
			2		
	:		$=\frac{-}{3}$	B1	
			CARIG		
		(v)	$\frac{\text{area of } \Delta EAC}{\text{area of } \Delta OAB}$		AO2
			$\frac{\text{area of } \Delta EAC}{\text{area of } \Delta OAC}$		
			$= \frac{\text{acc} \text{ of } \Delta OAC}{\text{area of } \Delta OAC} \times \frac{\text{acc} \text{ of } \Delta OAC}{\text{area of } \Delta OAB}$		
			$=\frac{4}{9} \times \frac{2}{9} = \frac{8}{97}$		
			$=\frac{7}{9}\times\frac{7}{3}=\frac{27}{27}$	B1	
10		Real	World Context Problem		AO3
- 	(a)	l			1103
		Mea	$n = \frac{\sum fx}{\sum f} = \frac{3321}{1000} = 3.321$	B1	
		!	lard deviation		
			$\frac{\sum f x^2}{\sum f} - \overline{x}^2 = \sqrt{\frac{11325}{1000}} - 3.321^2 = 0.544 \text{ (3s.f)}$	B1	
		- 1-	$\sum f^{-x} = \sqrt{1000}^{-3.321} = 0.344 (38.1)$		
	71.				
	(b)	Mr C	hew should recommend Mr Tan to produce Model X.		B0 if reason is wrong
	i	Beca	use the mean for X is larger than the mean for Y,	B1	Do it reason is wrong
		which Mode	h may suggest that more people are likely to buy		
		wiout	AA.		
				<u> </u>	

10	(c)	For Model Y, let the missing values for SD and A be a and		
ļ		b respectively.		
		Then the missing value for $SA = 1000-31-14-a-b$		
		= 955 - a - b		
		$\sum fx = 1007$		
		$Mean = \frac{\sum fx}{\sum f} = 1.907$		For forming the correct
			M1	equation for mean
		$\frac{a+62+42+4b+5(955-a-b)}{1000} = 1.907$		
		4879 - 4a - b = 1907		
		4a + b = 2972(1)		
		4a + b = 29/2 (1)		
		Standard deviation = $\sqrt{\frac{\sum f x^2}{\sum f} - (\overline{x})^2} = 1.611$		For forming the correct
		$\sqrt{\frac{a+124+126+16b+25(955-a-b)}{1000}} - 1.907^2 = 1.611$	M1	equation for standard deviation
		24125 - 24a - 9b = 6231.97		
		24a+9b=17893.03(2)		Accept any correct method of solving
		$(1) \times 6: \qquad 24a + 6b = 17832 (3)$		simultaneous equations
1				Simulations equations
		(2)		
		b = 20.3		
		Since b is a whole number, then $b = 20$.	A1	
		Hence the missing value for A is $b = 20$.		
	ŀ	Subst. $b = 20$ in (1): $4a + 20 = 2972$ a = 738		
		Hence the missing value for SD is $a = 738$.	A1	
		Hence the missing value for SA is $955-a-b$		
		=955-738-20	A1	
		=197	111	
<u> </u>	(3)	Mr Tan should produce Model Y.		
	(d)	Because there are 197 people (about 20% of those surveyed)	B1	B0 if reason is wrong
		who strongly agree that they will buy Model Y, but only 2		
		people strongly agree that they will buy Model X.		Accept any reasonable
		Although 347 people agree that they will buy Model X, it	B1	explanation based on
		was not a strong agreement that they will do it.		same idea given in mark scheme
		OR		
		Mr Tan should produce Model X. Because there are 349 people who agree and strongly agree		
		that they will buy Model X but only 217 people agree and		
		strongly agree that they will buy Model Y.		
L		שמיטינצון שפוסס מומי יויין		