

O LEVEL PRELIMINARY EXAMINATION 2020

LEVEL & STREAM

: SECONDARY 4 EXPRESS

SUBJECT (CODE)

: CHEMISTRY (6092)

PAPER NO

: 1

DATE (DAY)

: 17 SEPTEMBER 2020 (THURSDAY)

DURATION

: 1 HOUR

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

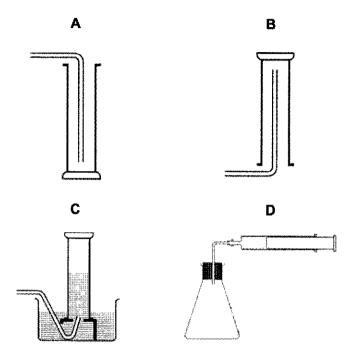
Do not use staples, paper clips, highlighters, glue or correction fluid.

Answer all multiple choice questions in the OMR answer sheet. For each question, there are four possible answers: **A**, **B**, **C** and **D**. Choose the most suitable answer and shade its letter in pencil on the OMR answer sheet.

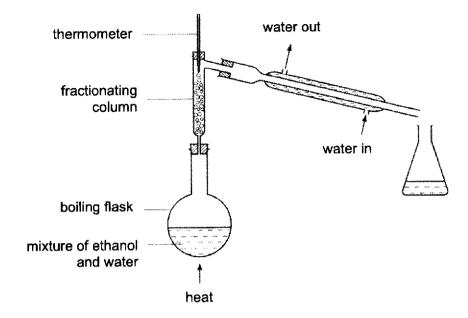
A copy of the Periodic Table is printed in this paper.

The use of an approved scientific calculator is expected, where appropriate.

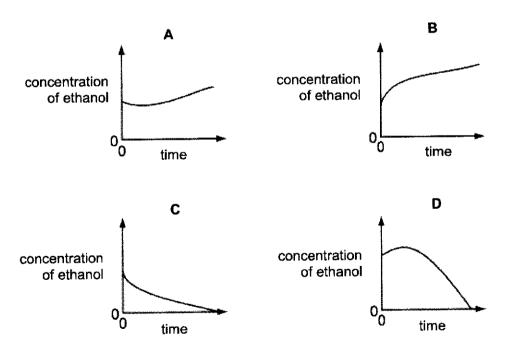
DO NOT TURN OVER THE QUESTION PAPER UNTIL YOU ARE TOLD TO DO SO.


Student's Signature	Parent's Signature	For Examin	ner's Use
Date	Date	Total	/ 40

This document consists of 18 printed pages including this cover page

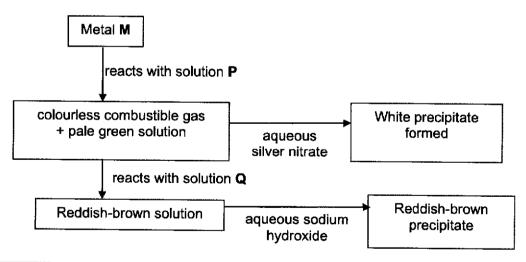

Setter: Mdm Shurvati

In an experiment, a student reacts nitric acid with zinc powder. She wants to collect and measure the amount of gas produced at 30-second intervals.


Which apparatus is most suitable for collecting and measuring the amount the gas produced?

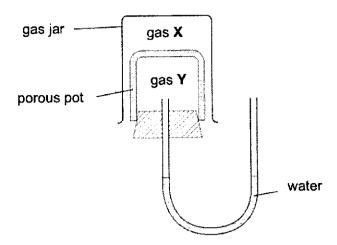
2 The apparatus shown is used to distill a dilute solution of ethanol in water. [boiling point of ethanol = 78 °C; boiling point of water = 100 °C]

Which graph shows the change in concentration of the ethanol in the boiling flask as the distillation proceeds?



- In which of the following solid mixtures can the underlined substance be obtained by adding water, stirring and filtering?
 - A Mixture of <u>copper</u> and copper(II) chloride
 - B Mixture of potassium chloride and potassium hydroxide
 - C Mixture of sodium and iron(II) sulfate
 - D Mixture of zinc and iron
- 4 A series of chemical tests performed on an unknown solution produced the following results.

test	observation	
add aqueous sodium hydroxide	white precipitate formed, precipitate dissolved in excess aqueous sodium hydroxide	
add acidified barium nitrate	white precipitate formed	


Which of the following substance could be present in the solution?

- A aluminium chloride
- B calcium carbonate
- C sodium hydrogencarbonate
- D zinc sulfate
- In the reaction scheme below, solutions **P** and **Q** are involved in some reactions. Identify **P** and **Q**.

	P	Q
Α	dilute hydrochloric acid	chlorine
В	dilute hydrochloric acid	potassium iodide
С	dilute nitric acid	chlorine
D	dilute nitric acid	potassium iodide

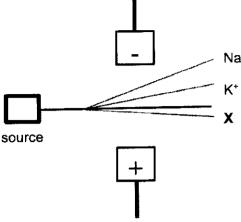
6 The following apparatus was set up as shown below.

Which of the following pair of gases **X** and **Y** will result in **no** movement of the water in the U-shaped tube?

	gas X	gas Y
Α	H ₂	He
В	N ₂	CO
С	O ₂	CH ₄
D	SO ₂	NO ₂

7 The information on two substances P and Q are given below.

substance	P	Q
arrangement of particles	close and disorderly	far apart and disorderly
movement of particles	sliding around randomly	moving rapidly and randomly


Four substances are given below.

description
copper at 100 °C
water at 25 °C
graphite at 30 °C
oxygen at 50 °C

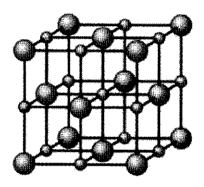
Which of the substances are P and Q?

	Р	Q
Α	1	2
В	2	4
С	3	1
D	4	3

8 In an experiment, a sample was vapourised, ionised and passed through an electric field. Analysis of the deflection occurring at the electric region revealed the following data for the sample.

[Ar: Li, 7; F, 19; Na, 23; K, 39; Br, 80; Rb, 85]

What is a possible identity of the unknown particle, X?


- A Br
- **B** F-
- C Li⁺
- D Rb⁺
- 9 Which of the following statements about an atom is correct?
 - A The number of protons determine its chemical properties
 - B The numbers of protons and neutrons determine its mass
 - C Its nucleon number is the total number of neutrons in its nucleus
 - D It is electrically neutral as there are equal numbers of protons and neutrons
- 10 Which of the following groups of substances contain an element, a compound and a mixture?
 - A brass, rust, haematite
 - B diamond, graphite, air
 - C limestone, diamond, water
 - D ozone, bronze, slag
- 11 Which of the following has substances with high melting points?
 - A copper, sodium chloride, silicon dioxide
 - B diamond, carbon dioxide, methane
 - C glucose, ammonia, aluminium oxide
 - p graphite, rubidium, magnesium oxide

12 The nucleon number of element **X** is 51. The ion **X**³⁺ has 20 electrons. What does the nucleus of the ion **X**³⁺ contain?

Legend: n = neutrons; p = protons; e = electrons

Α	20e	20p
В	20p	31n
С	23e	28n
D	23p	28n

13 The diagram shows the arrangement of the ions in an ionic crystal.

Which compound cannot have this arrangement of its ions?

- A lithium nitrate
- B zinc sulfate
- C sodium oxide
- D lead(II) sulfate
- 14 The diagram below shows the valence electrons of elements X and Y.

Which of the following correctly shows the type of bond and chemical formula of the compound formed between **X** and **Y**?

	type of bonds	chemical formula
Α	covalent	XY ₂
В	ionic	XY
С	ionic	X ₂ Y ₃
D	covalent	X ₃ Y ₂

15 The structural formula of sulfuric acid is shown.

How many pairs of valence electrons are **not** involved in bonding in one sulfuric acid molecule?

- **A** 5
- **B** 8
- **C** 10
- **D** 16

16 The equation shows the reaction between a metallic element X and water.

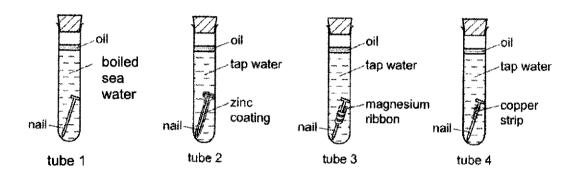
$$2X(s) + 2H_2O(l) \rightarrow 2XOH(aq) + H_2(g)$$

Which particles are responsible for the electrical conductivity in X and XOH?

	X	ХОН
A	electrons	cations
В	electrons	cations and anions
С	cations	electrons
D	cations	cations and anions

17 In the reaction below:

$$12H^{+} + 2IO_{3}^{-} + 10Fe^{2+} \longrightarrow 10Fe^{3+} + I_{2} + 6H_{2}O$$


Which of the following is the oxidising agent?

- A H⁺
- B Fe²⁺
- C 103
- **D** 1₂

18 The ionic equation for a reaction is shown below:

Which of the following conditions will make this reaction take place readily?

- A Aqueous sodium carbonate is added to limewater.
- B Calcium sulfate is added to aqueous sodium carbonate.
- C Carbon dioxide is passed through aqueous calcium chloride.
- D Calcium carbonate is crystallised from its saturated solution.
- 19 A student set up four test-tubes to investigate the factors that cause the rusting of iron nails.

After leaving the tubes for one week, which tubes would show evidence of rusting?

- A 1 and 2
- **B** 2 and 3
- C 3 only
- D 4 only
- 20 Which of the following pairs of compounds contain the same percentage by mass of nitrogen?
 - A NO₂ and NH₄NO₃
 - B NH₄CNO and (NH₂)₂CO
 - C N₂H₄ and NH₃
 - D (NH₂)₂CO and NH₄CI

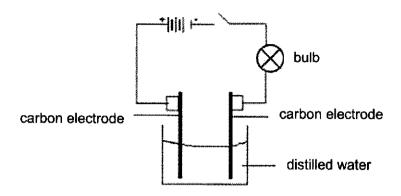
21 Upon strong heating, a metal nitrate compound undergoes decomposition according to the following equation:

$$2XNO_3(s) \rightarrow 2X(s) + 2NO_2(g) + O_2(g)$$

Complete decomposition of 3.40 g of the nitrate gives 240 cm³ of oxygen, measured at room temperature and pressure.

What is the relative atomic mass of X?

- A 85
- **B** 108
- **C** 133
- **D** 170
- 22 Element **X** is extracted by the electrolysis of a molten compound of elements **X** and **Y**. The electrode reactions are as shown:

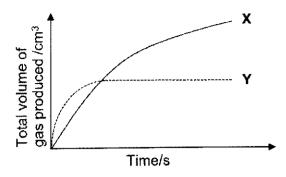

Cathode:
$$X^{2+}(l) + 2e^- \rightarrow X(l)$$

Anode:
$$2Y^{2-}(1) \rightarrow Y_2(g) + 4e^{-}$$

Which of the following could be the compound?

- A aluminium oxide
- B calcium chloride
- C magnesium oxide
- D potassium chloride

23 The diagram below shows an electrolytic cell. Initially, the bulb does **not** light up when the switch is closed.



Which of the following substances, when added, will cause the bulb to be the brightest?

- A ethanoic acid
- B magnesium carbonate
- C sodium hydroxide
- D sugar
- 24 How will the addition of a catalyst affect the energy of particles and the activation energy of the reaction?

energy of particles	activation energy
increases	decreases
increases	remains the same
remains the same	decreases
remains the same	remains the same
	increases increases remains the same

25 In the graph, curve X represents the results of the reaction between 1.0 g of granulated iron and excess acid at 30 °C.

Which changes will produce curve Y?

- A Using 0.5 g of granulated iron at 20 °C.
- B Using 0.5 g of granulated iron at 40 °C.
- C Using 1.0 g of granulated iron at 20 °C.
- D Using 1.0 g of powdered iron at 20 °C.

26 In which reaction is pressure least likely to affect the rate of reaction?

- **A** $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$
- **B** $HCl(g) + NH_3(g) \rightarrow NH_4Cl(s)$
- C $CO_2(g) + Ca(OH)_2(aq) \rightarrow CaCO_3(s) + H_2O(l)$
- **D** NaOH(aq) + HCl (aq) \rightarrow NaCl(aq) + H₂O(l)

27 Study the reaction below:

$$2KMnO_4\left(aq\right) + 5SO_2\left(g\right) + 2H_2O\left(\mathit{I}\right) \rightarrow K_2SO_4\left(aq\right) + 2MnSO_4\left(aq\right) + 2H_2SO_4\left(aq\right)$$

Which is the correct pair of oxidising and reducing agents and the corresponding observation in this reaction?

	oxidising agent	reducing agent	observations
A	SO ₂	KMnO ₄	colourless solution turns purple
В	KMnO₄	SO ₂	purple solution decolourises
С	KMnO ₄	H₂O	purple solution decolourises
D	H ₂ SO ₄	MnSO₄	colourless solution turns purple

- 28 Which compound will eliminate acid in the soil but does not react with ammonium fertilisers?
 - A calcium carbonate
 - B calcium hydroxide
 - C calcium nitrate
 - D calcium oxide
- 29 In which of the following reaction is zinc hydroxide not behaving as a base?

- **A** $3Zn(OH)_2 + 2H_3PO_4$ \longrightarrow $Zn_3(PO_4)_2 + 6H_2O$
- **B** $Zn(OH)_2 + +(NH_4)_2SO_4 \longrightarrow ZnSO_4 + 2NH_3 + 2H_2O$
- C $Zn(OH)_2 + 2HCI$ \longrightarrow $ZnCl_2 + 2H_2O$
- **D** $Zn(OH)_2 + 2NaOH \longrightarrow Na_2Zn(OH)_4$
- 30 Which pair of substances would **not** be suitable for producing a large quantity of carbon dioxide?
 - A iron(II) carbonate and hydrochloric acid
 - B lead(II) carbonate and hydrochloric acid
 - C sodium carbonate and sulfuric acid
 - D calcium carbonate and nitric acid
- 31 Which reaction produces most of the carbon monoxide used to extract iron in the blast furnace?
 - A burning coke in air
 - B reacting coke with carbon dioxide
 - C reacting iron oxide with coke
 - D decomposition of limestone
- 32 An element X reacts with iron to form two different compounds with the formulae FeX and Fe₂X₃.

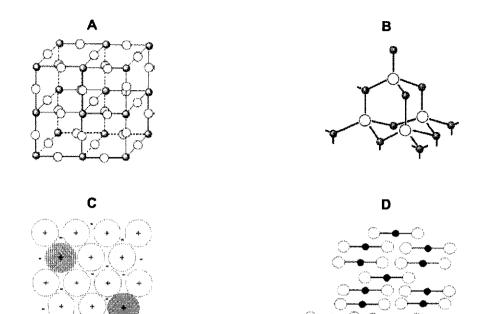
What would the proton number of X likely to be?

- A 5
- **B** 7
- **C** 8
- **D** 9

33 Approximately 40% of all iron and steel are produced by recycling.

The following statements are possible reasons for recycling iron.

- 1 Recycling reduces the amount of waste taken to landfill sites.
- 2 Recycling reduces the amount of pollution at the site of the ore extraction.
- 3 Iron ore contains a higher percentage of iron than scrap steel.


Which of the statements are correct?

- A 1 and 2 only
- B 2 and 3 only
- C 1 and 3 only
- **D** 1, 2 and 3
- Which of the following metals is extracted from its ore via reduction by carbon and would require the most energy to do so?
 - A Copper
 - B Iron
 - C Lead
 - D Zinc
- 35 Which of the following properties increases down the group in Group I?
 - A ease of losing an electron
 - B ionic charge
 - C melting point
 - D non-metallic character
- 36 The table gives the catalysts used in some industrial processes.

process/reaction	catalyst
Cracking	aluminum oxide or silicon(IV) oxide
Esterification	concentrated sulfuric acid
Haber	iron
Manufacture of margarine	nickel

How many different transition metals are included in the list of catalyst?

- **A** 1
- **B** 2
- **C** 3
- **D** 4
- 37 Which diagram best represents the structure of an alloy?

38 The table shows the results of adding weighed pieces of iron to solutions M and S.

solution used	initial mass of iron/g	final mass of iron after 15 minutes/g
M	5	4
S	5	4

What could be the aqueous solutions **M** and **S** be?

	M	\$
Α	copper(II) sulfate	silver nitrate
В	dilute hydrochloric acid	sodium chloride
С	iron(II)chloride	calcium chloride
D	magnesium chloride	dilute sulfuric acid

- 39 Which molecule has the greatest ozone-depleting potential?
 - A CFC/Br
 - B CFCl₃
 - C CF4
 - D CH₂F₂
- 40 An atmospheric pollutant can be removed by the process of oxidation.

Which pollutant is removed by this process?

- A carbon monoxide in a catalytic converter
- B nitrogen dioxide in a catalytic converter
- c nitrogen dioxide in acid rain by reaction with calcium carbonate
- D sulfur dioxide from the flue gases by reaction with calcium carbonate

The Periodic Table of Elements

11 1 1 1 1 1 1 1 1	1 -					***************************************		25	Group								J
1												=	2	۸	ΙΛ	NII.	0
Part							-										2
The color of the						-	I										£
1				Key			nydroger +										helium 4
Packet P		proton (at	Ê	omic) n	umber							9	9	_	80	c	2
11 12 14 15 14 14	Be atomi	atomi	€	c sym	<u>z</u>							6 0	ပ	z	0	سنا	ž
11 12 14 15 14 15 14 15 15 14 15 15	··			пате								baran	carbon	nitrogen	oxygen	Nuorine	neon
13 14 15 15 15 15 15 15 14 15 15	***************************************	relative	31	atomic	mass							***	2	7	1	13	20
24 25 26 27 28 29 30 31 32 33 Cr Mn Fe Co Ni Cu Zn Ga Ge As 52 55 56 59 50 31 32 33 42 43 44 45 46 47 48 49 50 51 40 TC Ru Rh Pd 47 48 49 50 51 Mo TC Ru Rh Pd Ag Cd In Sh 55 42 43 44 45 46 47 48 49 50 51 Mo TC Ru Rh Pd Ag Cd In Sh 55 74 75 76 77 78 79 80 81 82 83 W Re 100 110 111	••••											13	14	15	16	17	18
24 25 26 27 28 29 30 31 22 33 Cr Mn Fe Co Ni Cu Zn Ge As 52 55 56 59 59 30 31 32 33 42 44 55 56 59 59 64 65 70 75 75 40 TC Ru Rh 45 46 47 48 49 50 51 75 Mo TC Ru Rh Pd Ag Cd In Sn 55 74 75 76 77 78 79 80 81 82 83 W Re 75 76 77 78 70 80 81 82 83 104 105 110 111 112 114 114 114 8g 106 107<												¥	Ø	۵.	ဟ	õ	Ą
24 25 26 27 28 29 30 31 28 31 Cr Mn Fe Co Ni Cu Zn Ge As 52 56 59 59 59 30 31 32 33 42 43 44 45 46 47 48 49 50 51 Mo Tc Ru Rh Pd 47 48 49 50 51 Mo Tc Ru Rh Pd Ag Cd In Sn 55 74 75 76 77 78 79 80 81 82 83 W Re Os. Ir Pt Au Hg Ti Pb Bi 184 186 190 110 111 112 114 Bi Bi Sg Bh Hg Hg Rg Cn <td></td> <td>aluminium</td> <td>silicon</td> <td>phosphorus</td> <td>sulfur</td> <td>chlorine</td> <td>argon</td>												aluminium	silicon	phosphorus	sulfur	chlorine	argon
24 25 26 27 28 29 30 31 32 33 Cr Mn Fe Co Ni Cu Zn Ga Ge As 52 55 56 59 59 64 65 70 73 75 42 43 44 45 46 47 48 49 50 51 Mo Tc Ru Rh Pd Aq 47 48 49 50 51 Mo Tc Ru Rh Pd Aq		***************************************	ł	AVANATAMENTATION OF THE PARTY O	THE CONTROL OF THE PERSON OF T							27	28	ઝ	35	35.5	40
Cr Mn Fe Co Ni Cu Zn Ga Ge As 52 55 56 59 59 64 65 70 73 75 42 43 44 45 46 47 48 49 50 51 Mo TC Ru Rh Pd 47 48 49 50 51 Mo TC Ru Rh Pd Aq 47 48 49 50 51 Mo TC Ru Rh Pd Aq Aq Aq 49 50 51 74 75 76 77 78 79 80 81 82 83 W Re Os 1r Pt Au Hg Tr Pb Bis 184 186 190 110 111 112 204 207 209 Sg Bh<	7	22		23		8	5 8	27	83	29	99	3.	32	क्ष	ਸ਼	32	36
n chromium margarnese lion chromium margarnese lion cobalt nickel copper copper zinc galitum germanium arsenic arsenic 42 43 44 45 46 47 48 49 50 51 Mo TC Ru Rh Pd AQ Cd In Sn 51 Mo TC Ru Rh Pd AQ Cd In Sn 51 Mo TC Ru Rh Pd AQ Cd In Sn Sn Sn 74 75 76 77 78 79 80 81 82 83 W Re OS Ir Pt Au Hg Ti Pb Bi 184 186 190 110 111 112 204 207 209 Sg 8h Hs Mt Ds Rg Cn Fi In	Ca Sc I	F				£	ē	දි	Z	ਟੋ	Ŋ	Ĉ	ge	As	Şe	ä	호
52 55 56 59 59 64 65 70 73 75 42 43 44 45 46 47 48 49 50 51 Mo TC Ru Rh Pd Ag Cd In Sn 51 Mo TC Ru Rh Pd Ag Cd In Sn 51 74 75 76 77 78 79 80 81 82 83 W Re Os Ir Pt Au Hg Tr Pb Bi tungsten rhentum sosmium infilum platinum gold mercuny frailium lead bismuth 184 186 190 110 111 112 204 207 209 106 107 108 109 110 111 114 In Sg Bh Hs	scandium	(tanium	-	_		manganese	5	copa#	nickei	and do	zirc	unije	germanium	arsenic	selenium	bromine	krypton
42 43 44 45 46 47 48 49 50 51 Mo TC Ru Rh Pd Ag Cd In Sn Sb molybolenum echnietium ruthentium rhodum palledum silver cadmium tin Sn Sp 74 75 76 77 78 79 80 81 82 83 W Re Os Ir Pt Au Hg 77 Pb Bi tungsten rhenium scritium infatum platinum gold mercury fhallium lead bismuth 164 190 192 197 201 204 207 209 106 107 108 109 110 111 112 Fi Sg Bh Hs Mt Ds Cn Fi Incommitted - - - <td< td=""><td>45</td><td>48</td><td>- 1</td><td></td><td></td><td>53</td><td>88</td><td>ලි</td><td>59</td><td>64</td><td>65</td><td>2</td><td>೮</td><td>22</td><td>20</td><td>8</td><td>8</td></td<>	45	48	- 1			53	88	ලි	59	64	65	2	೮	22	20	8	8
Mo TC Ru Rh Pd Ag Cd In Sh Sb molybolenum sechnetium rutherium rhodum palladum silver cadmium th nutmory 74 75 76 77 78 79 80 81 82 83 W Re Os Ir Pt Au Hg 77 Pb Bi tungsten rhenium scritium infilum platinum gold mercuny fhallium bismuth 184 186 190 110 111 112 204 207 209 106 107 108 109 110 111 112 Fi Sg Bh Hs Mt Ds Rg Cn Fi Sg Bh Hs meitherium quimincentum companietum literoxium literoxium literoxium literoxium	39	40				.5	4	45	4	47	48	49	93	51	25	53	25
motybdenum technetium ruthenium rhodium thodium palladium thodium silver cadmium tidium tidium thodium thodium thodium tidium tidium palladium tungsten recum thenium tidium recum thenium tidium recum tidium tidium palladium technium recum tidium tidium palladium tidium palladium technium recum tidium tidium palladium tidium tidium palladium tidium tidium	>	7				ပ	₹	듄	2	Ag	ਲ	£	ঠ	හි	<u>a</u>	}****	×e
96 - 101 103 106 108 112 115 119 122 74 75 76 77 78 79 80 81 82 83 W Re Os Ir Pt Au Hg 77 Pb Bi tungsten rhenkun osmitum infdium platinum gold mercuny frailbun lead bismuth 184 186 190 192 197 201 209 209 106 107 108 110 111 112 71 Fi Sg Bh Hs Mt Ds Rg Cn Fi Fi seaborgium bohrium meitherium gamsledfum/roentgenum copernicium Hs Fi Fi	yttrum	zirconium			2	technetium	ruthenium	modum	palladium	silver	cadmium	iridium	£	antimony	tellurium	odine	xenon
74 75 76 77 78 79 80 81 82 83 W Re Os. Ir Pt Au Hg T1 Pb Bi tungsten rhenium osrnium inflium platinum gold mercury fraillium lead bismuth 184 186 190 192 197 201 204 207 209 106 107 108 110 111 112 71 71 Sg Bh Hs Mt Ds Rg Cn Fi seaborgium bohrium meitherium gamsledfum/roentgenum copernicium liserorum liserorum liserorum	80	9				1	δ	55	98	\$	112	115	119	122	128	127	5
W Re Os. Ir Pt Au Hg T1 Pb Bi tungsten rhenium osrnium infilum platinum gold mercury fhallium lead bismuth 184 186 190 192 197 201 204 207 209 106 107 108 109 110 111 112 714 FI Sg Bh Hs Mt Ds Rg Cn FI FI seaborgium bohrium meitherium gamsladfumircoentgenium copernicium literorium literorium literorium literorium literorium	57-71	2				75	9/	77	æ	79	8	8	젊	88	₩	8	89
tungsten rhenium osnium indium pletinum gold mercury thallium lead bismuth 184 186 190 192 195 197 201 204 207 209 106 107 108 109 110 111 112 114 209 Sg Bh Hs Mt Ds Rg Cn Ff Ff seaborgium bohrium meitherium damsladfurmicoentgenium copernicium liscovium liscovium liscovium liscovium	lenthanoids	Ξ		<u>100</u>		æ	රි	=	۵	Au	Ĕ	F	£	面	ද	₹	준
184 186 190 192 195 197 201 204 207 209 106 107 108 109 110 111 112 114 114 Sg Bh Hs Mt Ds Rg Cn F/I FI seaborgium bohrium meitherium dammsledfurmiroentgenium copernicium Illerovium Illerovi		hathium		tantakım		rhemium	osminm	irkikm	platinum	pog	mercury	thallium	lead	bismuth	polonium	astatine	redo:
106 107 108 109 110 111 112 114 Sg Bh Hs Mt Ds Rg Cn F/ seaborgium bohrium neitherium dammsledflumirceentgenium copernicium lierovium lierovium		178		196		186	190	192	195	197	2	200	8	88	ı	ı	1
Sg Bh Hs Mt Ds Rg Cn F/ seaborgium bohrium hassium meitherium damsladfaumicoentgenium copernicium lierovium	89 - 103 104	\$		105		107	108	109	110	111	112		114		116		
seaborgium bohrium hassium meitnerium darmsladtsumiroemtgenium copernicium lierovium	actinoids	¥		පි		6	뿟	¥	ő	Z,	ర్		ũ.	N CONTROL OF	2	romario.	
1 1	Rutherfordium	Rutherfordum		dubnium	_	Echrica Englished	hassum	mermentum	oarmsladfumir	centgenium	copernicium		Herovum		Ivermorium	6672i.	c=======
	1	1	- 1	1	1	1	J	ı	1	1	-		l			· · · · · · · · · · · · · · · · · · ·	waterwo

71	3	tutetium	175	103	۲	аминисит	ı	
70	۶	ytterbium	173	102	ž	mobelium	ı	A O Y C. B. W. Combined Solver, other street, many
69	٤	thullium	169	5	Md	mendelevin	ı	The second common terms of the second
88	ជ័រ	erbium	167	28	E	fermium	ı	
67	운	halmium	165	8	Ш	einsteinum	1	
99	à	dysprosium	163	86	ڻ	cattomium	1	
65	2	terhium	159	97	ठ	berkelium	ļ	
64	B	gadofinism	157	96	క్ర	COUNT	ı	
ස	园	europium	152	ક્ક	Am	americium	ı	
62	E.S	samanum	22	8	2	piutonium	ı	THE PARTY OF THE P
હ	Ē	promethium	ı	93	ĝ	mentum	1.	THE RESERVE AND THE PERSON NAMED AND THE PERSON NAM
		2			>			
23	ፚ	praseodymium	141	2	g	protectmum	231	
58	ပီ	Centra	140	8	E	thorium	232	
21							;	
lanthanoids				actinoids				

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

O LEVEL PRELIMINARY EXAMINATION 2020

LEVEL & STREAM

: SECONDARY 4 EXPRESS

SUBJECT (CODE)

: CHEMISTRY (6092)

PAPER NO

: 2

DATE (DAY)

: 2 SEPTEMBER 2020 (WEDNESDAY)

DURATION

: 1 HOUR 45 MINUTES

READ THESE INSTRUCTIONS FIRST

Write your name, index number and class on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A

Answer all questions in the spaces provided.

Section B

Answer all three questions, the last question is in the form either/or.

Answer all questions in the spaces provided.

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question.

A copy of the Periodic Table is printed in this paper.

The use of an approved scientific calculator is expected, where appropriate.

		For Examin	er's Use
		A	/50
		В	/30
Student's	Parent's		
Signature	Signature	Total	/80
Date	Date	ļ	

This document consists of 24 printed pages including this cover page

Setter: Mdm Shuryati

Section A

Answer all the questions. Write your answers in the spaces provided on the question paper.

A1 Hydrogen, deuterium and tritium are isotopes of one another.
Using this information, complete Table 1.1.

(a)	name	formula	number of protons	number of neutrons	number of electrons
	hydrogen atom	1 _H	1		1
	deuterium ion	2 _H +			0
	tritium ion			2	2

Table 1.1

[3]

(b) Table 1.2 gives the relative abundance of each isotope in a mass spectrum of sample of germanium, Ge.

mass	70	72	74
relative abundance (%)	24.4	32.4	43.2

Table 1.2

Use the data in Table 1.2 to calculate the relative atomic mass (A_{r}) of this sample of germanium.

	A _r of germanium =	[2]
(c)	A student commented, "Isotopes of an element should all have the same chemical properties."	
	Do you agree with the student? Give a reason for your answer.	
		[1]

A2 Table 2.1 shows the formulae of some reagents. Use the formulae to answer the questions that follow.

Each reagent can be used once, more than once, or not at all.

Na₂CO₃(aq)	KOH(aq)	CuC/ ₂ (aq)
Zn(s)	Ba(NO ₃) ₂ (aq)	H ₂ SO ₄ (aq)
(NH₄)₂SO₄(aq)	PbCO₃(s)	Ag(s)

Table 2.1

(i)	would produce a green insoluble salt,
(ii)	would produce a white precipitate,
(iii)	would produce a gas which turns moist red litmus blue,
(iv)	would produce a pink solid,
(v)	would produce a salt prepared by titration.

	arrangement:		
-			
_			
		_	
r	motion :		
-			
- (b) <i>F</i>	A student separates four a	mino acids by paper	chromatography using
0 7 0	different solvents. The solvent front of solven chromatogram while the solv Table 3.1 shows the R _f value	t 1 takes five minutes ent front of solvent 2 tal s she obtained for thes	s to reach the end of kes ten minutes. e amino acids.
0 7 0	different solvents. The solvent front of solvent chromatogram while the solvent fable 3.1 shows the R _f value amino acid	t 1 takes five minutesent front of solvent 2 tales she obtained for thes	s to reach the end of kes ten minutes. e amino acids. Rf in solvent 2
0 1 0	different solvents. The solvent front of solven chromatogram while the solvent fable 3.1 shows the R _f value amino acid	t 1 takes five minutesent front of solvent 2 tales she obtained for thes Rf in solvent 1 0.2	s to reach the end of kes ten minutes. e amino acids. Rf in solvent 2 0.5
0 7 0	different solvents. The solvent front of solvent chromatogram while the solvent fable 3.1 shows the R _f value amino acid A B	t 1 takes five minutesent front of solvent 2 tales she obtained for thes Rf in solvent 1 0.2 0.1	s to reach the end of kes ten minutes. e amino acids. Rf in solvent 2 0.5 0.4
0 7 0	different solvents. The solvent front of solven chromatogram while the solvent fable 3.1 shows the R _f value amino acid	t 1 takes five minutesent front of solvent 2 tales she obtained for thes Rf in solvent 1 0.2	s to reach the end of kes ten minutes. e amino acids. Rf in solvent 2 0.5

(ii) The student wrote the following paragraph about the chromatography experiment that she has conducted.

'It is better to use solvent 2 as it allows me to find out the identity of the 4 amino acids. One source of error in this experiment is that the duration of chromatography for solvent 2 is longer than for solvent 1, thus it is an unfair experiment.'

Do you agree with the student? Explain your reasoning.								
	<u></u>							

[2]

A4 Fig. 4.1 shows the structures of substances A and B.

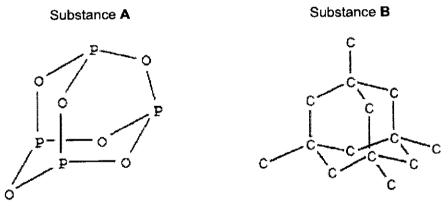
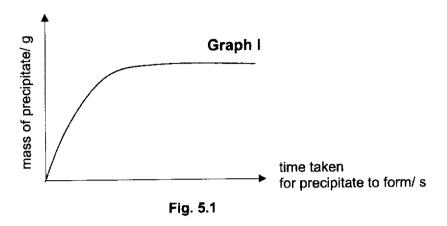
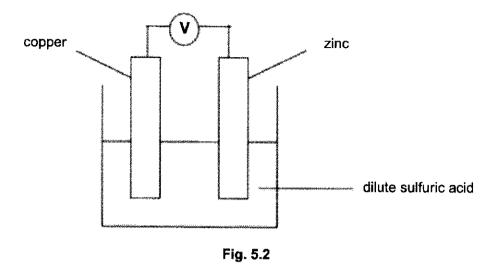



Fig. 4.1

a)	Write down the molecular formula of substance A.	١.
o)	Explain why substance B is a poor conductor of electricity.	L
		['

(c)	c) Substance A is a simple covalent molecule while substance B is a macro								
		reference to the structures shown in Fig. 4.1, explain the difference in terms ructure and bonding between simple and giant molecular structures.							
(d)	What	t type of oxide is substance A ? Explain your answer.							
(a)		e hydrochloric acid is added to a solution of sodium thiosulfate. The reaction shown below.							
	$2HCl(aq) + Na_2S_2O_3(aq)$ \longrightarrow $2NaCl(aq) + SO_2(g) + S(s) + H_2O(l)$								
	(i)	Using your knowledge of particle collisions, explain clearly how the rate of reaction is affected with increasing pH.							

(ii) In an experiment, 50.0 cm³ of 1.0 mol/dm³ dilute hydrochloric acid is added to 50.0 cm³ of 1.0 mol/dm³ sodium thiosulfate solution. The mass of the precipitate is measured and recorded in Fig. 5.1


Explain why the mass remains constant after some time. Show all working.

(iii) On the graph in (a)(ii), sketch the graph of the results you would expect if the thiosulfate solution is heated from room temperature to 50 °C.

Label this "Graph II". [1]

[2]

(b) Fig. 5.2 shows an electric cell.

- (i) Indicate with arrows on the diagram to show the direction of the flow of electrons in the wire. [1]
- (ii) The experiment is repeated with the zinc electrode replaced by iron.

 State and explain the change in voltmeter reading obtained.
- 6 (a) Strontium, Sr is in the same group as calcium and barium in the Periodic Table.
 - (i) Explain in terms of atomic structure, why strontium is positioned below calcium but above barium in the Periodic Table.

[1]

[1]

(ii) Strontium reacts with cold water.
Write a balanced equation for the reaction.

(iii)	Would you calcium?	expect	strontium	to	be	more	reactive	or	less	reactive	than	
	Explain you	r answe	r.									
						0.2020					-	
												[1]

(b) A student compared the speed of decomposition of three metal carbonates. She measured the volume of gas released over time using the apparatus shown in Fig. 6.1.

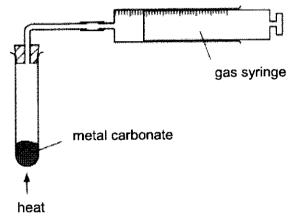


Fig. 6.1

State **one** thing that must be kept constant if the speed of decomposition of the three metal carbonates is to be compared.

[1]

(c) Fig. 6.2 shows the graph of the volume of carbon dioxide released when the three metal carbonates decomposed when heated.

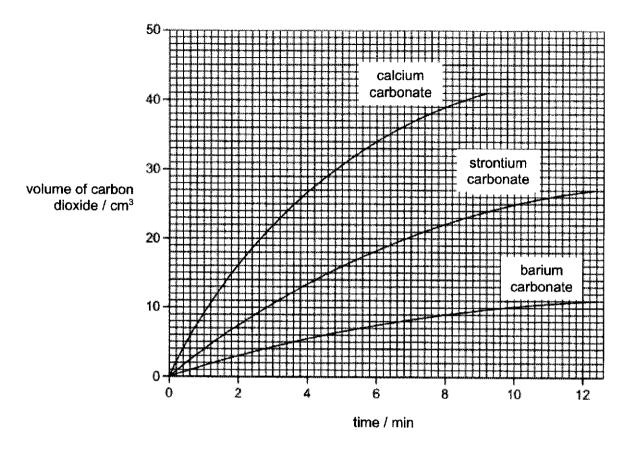


Fig. 6.2

[1]

Репоск	Table?		
	-		

Label the graph as (c)(ii).

	(iii)	When 0.1 mole of barium carbonate was heated, 15.00 g of barium oxide was formed. Calculate the percentage yield of barium oxide.	
		Calculate the percentage yield of bandin oxido.	[2]
(d)	(i)	Draw the 'cross and dot' diagram to show the arrangement of electrons in calcium oxide. Show valence electrons only.	
	(ii)	Explain the difference in the electrical conductivity between barium and barium oxide.	[2]
			[2]

		12	
(e)	Iron	is extracted in the blast furnace before it is made into alloys.	
	(i)	Write the balanced chemical equation for the extraction of iron in the blast furnace.	
	(ii)	Describe the bonding in iron metal.	[1]
	(iii)	Explain why underwater pipes have a piece of magnesium attached to them.	[1]
The	volum	is produced via the Haber process. se of gases in the reaction chamber is monitored throughout the reaction, and were plotted in the graph in Fig. 7.1.	[2]
volur	ne of	gas / dm ³ 40 30 20 A B 10 C time / min	
		Fig. 7.1	
(a)	Write	the equation for the formation of ammonia gas.	

A7

[1]

(b)	Deduce answer.	gas	each	graph	represents,	and	explain	how	you	derived	your	
		 		<u>.</u>						-		
		 										
		 						····	***			
												[2]

Section B

Answer all three questions in this section.

The last question is in the form of an either/or and only one of the alternatives should be attempted.

B8 Read the information about some titration experiments.

A pH probe attached to a computer measures pH changes during some titration experiments.

In the **experiment 1**, 0.2 mol/dm³ hydrochloric acid was added from a burette to 25 cm³ of dilute sodium hydroxide.

The pH probe measured the pH during the experiment.

Fig. 8.1 shows the results of the experiment 1.

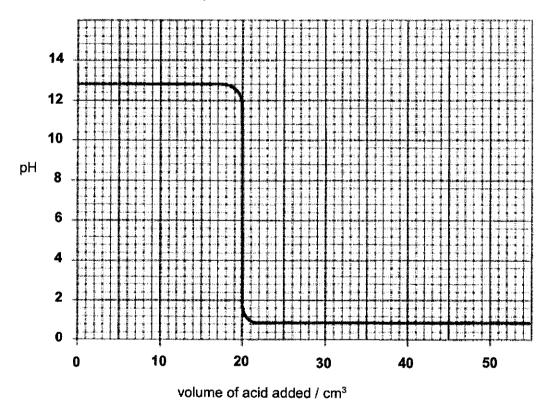
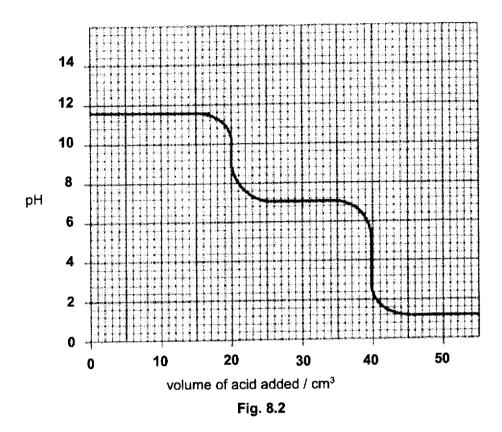
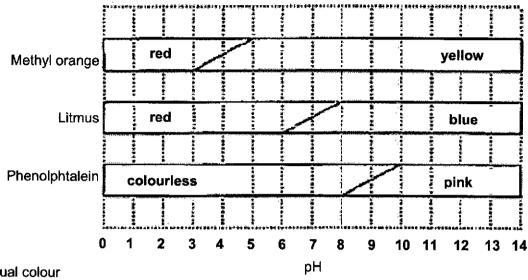



Fig. 8.1

In **experiment 2**, 0.2 mol/dm³ hydrochloric acid was added from a burette to 25 cm³ of dilute sodium carbonate.

Fig. 8.2 shows the results.

The reaction between sodium carbonate and hydrochloric acid happens in two stages.


Stage 1: Sodium carbonate reacts with dilute hydrochloric acid to form sodium hydrogencarbonate (NaHCO₃) and a neutral salt.

Stage 2: Sodium hydrogencarbonate undergoes a further reaction with hydrochloric acid.

Endpoints and indicators

The endpoint of each titration happens when the indicator changes colour.

Fig. 8.3 shows the colours of some indicators at different pH values. In between the colours, most indicators change colour gradually over a range of pH values.

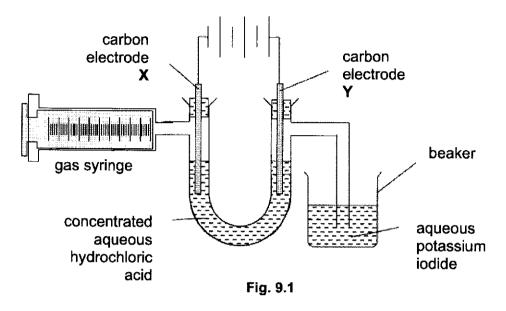

gradual colour change

Fig. 8.3

(a) Use the information to calculate the concentration of sodium hydroxide used in experiment 1.

(b)	A third experiment was carried out. A solution of sodium hydroxide of the same concentration as that used in experiment 1 was used. This time dilute hydrochloric acid of a concentration of 0.1 mol/dm³ was added from the burette.	
	On Fig. 8.1, sketch the graph you would expect from this experiment.	[1
(c)	What is the pH of sodium hydrogencarbonate?	[1
(d)	What is the name and formula of the neutral salt formed in experiment 2 by the first stage of the reaction between sodium carbonate and hydrochloric acid?	[1
(e)	Sodium carbonate is described as a weak alkali but sodium hydroxide is described as a strong alkali.	ι,
	Use information from the graphs to explain why.	
	The state of the significant are in Fig. 9.3 can be used to give an accurate	[2
(f)	Explain why any of the indicators in Fig. 8.3 can be used to give an accurate titration volume when hydrochloric acid is titrated with dilute sodium hydroxide.	
	Explain why methyl orange would not be suitable to use when titrating sodium	[1
(g)	carbonate with dilute hydrochloric acid.	
		[1

B9 The electrolysis of concentrated aqueous hydrochloric acid was carried out using the apparatus as shown in Fig. 9.1.

(a) Construct the half equations for the reactions at the electrodes.
 carbon electrode X ______
 carbon electrode Y _____
 (b) Predict the observations in the beaker containing aqueous potassium iodide as the

electrolysis proceeds.

With the aid of a chemical equation, explain your answer.

[3]

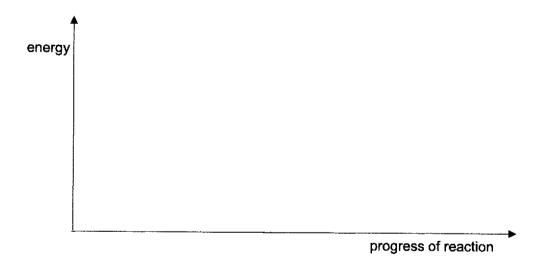
[2]

_	
_	
	nother experiment was carried out to electrolyse copper(II) sulfate solution using opper electrodes.
	Student ${\bf A}$ commented that the colour intensity of the blue copper(II) sulfate solution will start to fade away throughout the experiment.
	Student B commented that there will be no changes in the colour intensity of the blue copper(II) sulfate solution throughout the experiment.
٧	Vhich student is correct? Explain your answer with the help of half equations.
_	
_	

Either

B10 The structural formula of ethane is

The combustion of ethane gas can be represented by the following equation.


$$2C_2H_6 + 7O_2 \rightarrow 4CO_2 + 6H_2O \Delta H = -2868 \text{ kJ mol}^{-1}$$

Some bond energy values are given in Table 10.1.

bond	bond energy / kJ mol ⁻¹
C-H	410
0=0	496
C=O	805
O-H	460

Table 10.1

- (a) Draw an energy profile diagram for the combustion of ethane. Your diagram should indicate
 - the activation energy,
 - the enthalpy change of reaction, ΔH.
 - · the formulae of the reactants and products.

[3]

(b)	Calculat	te the bond energy for the C-C bond.	
			[3]
(c)	Calcula	ite the energy released by the complete combustion of 48.0 cm³ of ethane.	[v]
			[2]
(d)	The and fossil for	nount of carbon dioxide in the atmosphere is increasing due to our use of uels.	
	(i)	State the harmful effect of high concentration of carbon dioxide.	
			[1]
	(ii)	One approach to the problem is to plant more trees. Suggest why planting more trees is not a long term solution to the increase in the amount of carbon dioxide.	
			[1]

Or

B10 (a) An oxyacid is a compound that contains hydrogen, oxygen and at least one other element. Iodine forms several types of oxyacids and their names and chemical formulae are given in Table 10.2.

name of oxyacid acid	chemical formula	oxidation state of iodine
periodic acid	HIO ₄	
iodic acid	HIO ₃	
hypoiodous acid	HIO	

Table 10.2

What is the formula of the anion present in periodic acid? Draw a 'dot-and-cross' diagram to show the bonding in a molecule of hypoiodous acid, HIO.	Complete			show	the	oxidatio	on states	of ic	odine	in the
•	What is th	ne formula	of the	anion	prese	ent in pe	riodic aci	d?		
•										
			 ,							

(b)	lodic acid is produced when iodine is mixed with water and chlorine, as shown in
	the equation below.

 $l_2 + 6H_2O + 5Cl_2 \rightleftharpoons 2HIO_3 + 10HCl$

Explain, in terms of oxidation states, why this is a redox reaction									
	-								
	-								

[2]

- (c) Oxalic acid is made up of carbon, oxygen and hydrogen and it contains 26.7 % carbon and 2.20 % hydrogen by mass.
 - (i) Determine the empirical formula of oxalic acid.

[2]

(ii) The relative molecular mass of oxalic acid is 90.Determine the molecular formula of oxalic acid.

[1]

End of Paper

The Periodic Table of Elements

		~.	<u>a</u>	heitum 4	o	ø	8	0	8	 	5	_	9		ű	~~·	4	0	ED.	***	ဖ		F	4	******	********	3-43943-406	62-62662
				Ter 7	_	Z	ě	~		Q .		d	e	X	X X	· Φ	5	×	X	<u></u>	œ	<u>~</u>	pez	1				·nn.q.
	5	A to collamon secures			0	L	fluorine	ţ.	17	ö	chlorine	33.5	35	ă	bromine	80	53	*****	sodine	127	85	₹	astaine	ı				
***************************************	N				8	0	oxygen	16	16	ß	suffur 3	75	ਲ	တ္တ	selenium	73	25	P	tellurium	128	쬾	ကိ	polonium	1	116	_	ivermorium	
***************************************	>				7	z	nitrogen	<u>प</u>	15	۵	surodesous	- 2	33	As	arsenic	75	51	හි	antimony	122	83	洒	Dismuth	508				***************************************
esserving of the contraction of	<u>\</u>				9	ပ	carpon	12	4	ಹ	- Long G	27	33	9	lermanium	73	ន	స్	£	5	82	£	ead	207	174	ũ	flerowum	1
TEN FORTHANDONAN ANDROAS AND					ιs	മ	paron	<u>;</u>	13	Αĭ	iluminium 27	7.7		eg	gaillum	٤	49	<u>_</u>	mdhm	<u>t</u>	*	F	thallium	204				
													ଞ	Ŋ	zirc	92	48	ප	:#dmium	112	80	Ĕ	mercuny	ž	112	ర్	pernicium	1
													8	ವ	sopper	8	47	Ag	i iver	8	79	₹	DJof.	197	111	-16#10m0043	E	
Q												***************************************	8	Z	nickei	G G	46	2	- unipelle	90	78	۵	olatinum	2 8	110	<u>~</u>	mstadtium ro	1
Group												***************************************	27	ප	copait	20	45	듄	rhodium F	5		<u>_</u>	iridium	192	109	¥	eitnerium da	1
***************************************		4	I	hydrogen 1	PA / 1. A. A. 11. 11. 11. 11. 11. 11. 11. 11							Madhaua	00-00 ¢ N/A	L'AL AL A	er enemen	Nece-cours									108 801	And Sandana	E.	
				e de la constante de la consta									23	Ę	manganese	55	43	ည	technethum r	1	75	<u></u>	memun	186	107	කි	pohrium	
					mber	~		ass				- 3-		*******	*****										106			ı
				Key	proton (atomic) number	atomic symbol	name	atomic m					23							.)					1 35		dubnium se	1
					proton (aton		relative					2	F	itanium \	89	\$	Ž	throphium	9	22	Ī	hafman	178	\$	-	utherfordium	1
												ļ						<u>~</u>							89 103	actinoids	æ	_
	=				***	96	Seryffeem	6	2	S S S	magnesium 2.4	4-										-	Carium				radium	
Wilder of Marin Strangers and Assessment Ass						MODEL STATE	het		-		m cc	~*	-				**********				-	**********	maa	~~-4	-		francium	~~~

71		lutetium	175	103	 亡	(awrenoium	ì
22	۶	VIIIerbium V	173	102	2	nobelium	ı
69	٤	thukum	69	101	Md	mendelevarm	ı
68	ш	erbium	167	2	Fa	fermium	1
29	운	holmium	165	66	щs	emsternum	Ì
99	۵	dysprosium	£	86	ざ	californium	ŧ
33	4	terbium	159	97	益	berkelium	ì
28	B	mauuppes	151	96	క్	CURIUM	Į
63	ជា	europium	152	88	Am	amencum	l
62	S	samaríum	<u>8</u>	94	2	plutonium	ţ
61	Ę	promethium	ı	93	2	mountdeu	ı
99	2	neodymium	144	85	>	uranium	238
59	ፈ	prassodymum	141	91	Pa	protectimum	231 238
58	ပီ	Certium	54	8	F	thonum	232
23	<u>a</u>	lanthanum	139	89	Ac	acomon	ı
lanthanoids				actinoids			

The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).

PartnerInLearning

MARKING SCHEME PRELIM EXAM CHEMISTRY 2020 SETTER: MDM SHURYATI

PAPER 1

1	2	3	4	5	6	7	8	9	10
D	С	Α	D	Α	В	В	Α	В	D
									
11	12	13	14	15	16	17	18	19	20
Α	D	С	Α	В	В	С	Α	D	В
21	22	23	24	25	26	27	28	29	30
В	С	С	С	В	D	В	Α	D	В
31	32	33	34	35	36	37	38	39	40
В	С	Α	D	Α	В	С	A	В	A

MARKING SCHEME PRELIM EXAM CHEMISTRY 2020 SETTER: MDM SHURYATI

Paper 2

			Pap	er 2		,	•••					
A1	(a)	name	formula	number of protons	number of neutrons	number of electrons						
		hydrogen atom	1 _H	1	<u>0</u>	1	1					
		deuterium ion	2 _H +	<u>1</u>	1	0	1					
	1 T Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y Y	tritium ion	³ H [.]	1	2	2	1					
		Each row - 1	n									
	(b)	Ar of Ge = ((24.4/100) x 70) + ((32.4/100) x 72) +((43.2/100) x 74); 1 = 72.4 (3sf); 1										
	(c)	Agree; All isotopes of the same element have same number of valence electrons.										
A2	(ai)	Na ₂ CO ₃ (aq);	CuCl ₂ (aq)				1					
	(aii)	Ba(NO ₃) ₂ (aq)	; (NH ₄) ₂ SO ₄ (aq)/ H₂SO₄(aq)		1					
	(aiii)	KOH(aq); (Nh	l ₄) ₂ SO ₄ (aq)				1					
	(aiv)	Zn(s); CuCl ₂	(aq)				1					
	(av)	H ₂ SO ₄ (aq); I	(OH(aq)/ Na₂	CO₃(aq)			1					
	(b)			→ 2NaC <i>l</i> (aq) + CuCO ₃ (s)		1					
A3	(a)	arrangement random	: From clos	ely-packed tog	ether; orderly	to far apart;	1					
		motion: From	vibrate at fixe	ed positions to r	nove randomly	and rapidly	1					
	(bi)	С					1					
	(bii)	I disagree because solvent 2 does not allow student to identify the 4 amino acids as B and D have identical Rf values hence cannot be distinguished;										
		Duration of chromatography is also not a source of error, because Rf a ratio (of distance travelled by dye to distance travelled by solvent) / is only dependent of solubility of component in a specific solvent./ values are not time dependent.										
A4	(a)	P ₄ O ₆					1					

	(b)	Each carbon atom in substance B is bonded to 4 other carbon atoms,	1
		hence all 4 valence electrons are used for covalent bonding; There are no mobile ions or electrons to conduct electricity.	
	(c)	A: discrete single molecules with weak intermolecular forces of	1
		attraction; B: an extensive network of many atoms bonded by strong covalent bonds.	1
	(d)	Phosphorus is a non-metal and non-metal oxides are usually acidic	1
A5	(ai)	The rate is lowered/ decreased; Increased in pH occurs when H+ ions is removed from the solution which lowers the concentration of the H+ ions;	1
		This means that number of effective collisions per second between H+ and reactant particles decreases, hence the rate decreases.	1
	(aii)	No of moles of HCl = $50/1000 \times 1 = 0.05 \text{ mol}$ No of moles of sodium thiosulfate = $50/1000 \times 1 = 0.05 \text{ mol}$;	1
		From equation, $ 2 \text{ mol HCl}: 1 \text{ mol Na}_2S_2O3 \\ 0.05 \text{ mol HCl}: 0.025 \text{ mol Na}_2S_2O_3 \text{ (needed)} < 0.05 \text{ mol (given)} \\ \text{Hence, HCl is limiting;} $	1
		The reaction stopped as all the HCl has been used up [1].	
	(alii)	Graph II: Steeper gradient compared to Graph I Mass of precipitate is the same as in Graph I	1
	(bi)	Copper Time International Action Control of	1

	(bii)	The voltmeter reading will be lower than that with zinc.	1			
		Iron is below zinc in the reactivity series.				
		Hence, the closer the metals are in the reactivity series, the smaller the	1			
		difference in voltage across the two electrodes.				
A6	(ai)	Sr has one electron shell more than Ca but one less than Ba;				
	(aii)	$Sr + 2H_2O \rightarrow Sr(OH)_2 + H_2;$				
	(aiii)	Sr is more reactive, Sr is below Ca in the Periodic Table; reactivity	1			
	()	increases down a group / Sr loses electrons more easily than Ca;				
	(b)		1			
	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	mass/ no of moles of carbonate used;				
	(ci)	calcium carbonate decompose faster than strontium carbonate which is faster than barium carbonate / correct trend i.e. decomposition is less rapid further down the group;	1			
		The ionic bonds between the ions in barium carbonate are stronger than in strontium carbonate which is stronger than in calcium carbonate/correct trend i.e the ionic bonds become stronger in the metal carbonates from calcium to strontium to barium. or reverse argument	1			
	(cii)	on the x-axis	1			
	(ciii)	Ratio of mole BaCO ₃ : BaO is 1:1	1			
		Mass of BaO = $0.1 \times (137 + 16)$				
		= 15.3 g				
		Percentage yield of BaO = (15.00/15.3) x 100%	1			
		= 98% (2sf)				
	(di)	Ratio 1 calcium ion : 1 oxide ion;	T			
	()	calcium ion : correct number of valence electrons and charge	1			
		Oxide ion : correct number of valence electrons and charge	1			
	(dii)	Barium: conduct electricity in solid and molten; presence of mobile	1			
	()	electrons to move and carry current;				
		Barium oxide: does not conduct in solid; ions in fixed positions	-			
		conduct electricity in molten and aqueous; presence of mobile ions to				
		move and carry current				
	(ei)	Fe ₂ O ₃ + 3CO — 2 Fe + 3 CO ₂	┿.			
		Electrostatic forces of attraction between the positive iron ions and 'sea	+.			
	(eii)	of mobile /delocalised electrons'				
	(alli)	Magenesium is more reactive than iron;	╁,			
	(eiii)	Air/Oxygen and water will react with magnesium instead of iron;	,			
		i de la companya de				
		Magnesium will corrode instead of iron	+,			
7	(a)	$N_2 + 3H_2 \rightleftharpoons 2NH_3$				

	(b)	C is ammonia as its volume increases from zero.	1			
		A is hydrogen and B is nitrogen, as a greater volume of hydrogen				
		is used up in the reaction as compared to nitrogen (according to				
		the mole ratio of 3:1).				
	-	SECTION B				
B8	(a)	No of mole hydrochloric acid = 0.2 x 20/1000				
		= 0.004 moles	[
		No of mole of NaOH = 1]			
		No of mole HCI 1	-			
		No of mole of NaOH = 0.004 mol				
		ratio to be shown				
		Concentration of NaOH = 0.004 /0/025				
		=0.16 mol/dm ³	[
	(b)		1			
		14				
		12-				
		10				
		6				
		0 10 20 30 40 50	İ			
		volume of acid added / cm ³				
	(c)	pH 9 (accept 9.3 to 9.5)	r			
	(d)	sodium chloride, NaCl	[
	(e)]			
	(6)	-pH of NaOH is higher (pH 13). pH of sodium carbonate is low (pH 11.6)	/er [
			Ì			
		(pH values must be given)	_			
		-NaOH completely neutralises HC/ (end point pH 7)]			
		En-point of sodium carbonate and HCl is at acidic pH/(3.5 to	4.2)			
	(5)	(pH 7 must be given)				
	(f)	The pH changes from 1.8 to 12(accept 0.8 to 12.2).	[
	1	All the indicators show a colour change within this range.				
	(g)	Cannot detect colour change at stage 1	[
	1	Can only detect colour change at stage 2				
B9	(a)	$X: 2H^+(aq) + 2e^- \rightarrow H_2(g)$				
		$\mathbf{Y}: 2\mathbf{C}I(\mathbf{q}\mathbf{q}) \to \mathbf{C}I_2(\mathbf{g}) + 2\mathbf{e}^{-1}$				
		1 m for correct balanced equations	1			
		1 m for correct state symbols	1			

	(b)	Colourless solution turns brown/A black solid is formed;	1
		$Cl_2 + 2l^2 \rightarrow l_2 + 2Cl^2$; (full equation accepted)	1
		Chlorine is more reactive than iodine;	1
		So chlorine will displace iodine from potassium iodide	
	(c)	Oxygen gas;	1
		Over time, concentration of chloride ions decrease and hydroxide ions	1
		become preferentially/selectively discharged, producing oxygen.	
	(d)	Student B.	1
		Anode decreases in mass/ dissolves;	
		Increase in mass at the cathode/ A reddish-brown solid deposited at the	
		cathode;	1
		At anode: Copper electrode dissolves to form copper(II) ions/ accept	
		half equation;	1
		At cathode: Copper(II) ions are preferentially/selectively discharged,	
		forming copper metal/ accept half equation. OR	
		Student B is correct;	
		The concentration of copper(II) ions in the electrolyte remains the same	[1]
		because copper(II) ions are added to the electrolyte when the anode	
		dissolves to form copper(II) ions;	
		and at cathode, the copper(II) ions are preferentially discharged at the	[1]
		cathode to form copper;	
		.,	
		At cathode : Cu²+ (aq) + 2e → Cu(s);	[1]
		At anode : Cu (s) → Cu ²⁺ (aq) + 2e	
		At anode: Od (3) 7 Od (aq) 1 20	
A. Lorden			
			<u> </u>

Either	(a)		T
B10		↑	
	;	energy $2C_2H_6 + 7O_2$ Ea	
		$\Delta H = -2868 \text{ kJ mol}^{-1} \qquad \qquad 4CO_2 + 6H_2O$	
		progress of reacti	οn
		 1 mark for correct graph 1 mark for indicating both Ea 1m for ΔH correctly with labels and direction 	
	(b)	Total energy released during bond formation = 4 × 2 × 805 + 6 × 2 × 460 = 11960 kJ	[1]
		Total energy absorbed during bond breaking = 11960 - 2868 = 9092 kJ	[1]
		bond energy for the C – C bond = (9092 – 2 × 6 × 410 – 7 × 496) ÷ 2 = 350 kJ mol ⁻¹	[1]
		Accept any other logical method	
	(c)	No of mol of ethane = 48.0 ÷ 24000 = 0.00200 Energy released = 0.00200 ÷ 2 × 2868 = 2.87 kJ	[1] [1]
	(di)	Greenhouse gas; leads to global warming	[1]
	(dii)	At night/in dark, plants continue to respire to produce carbon dioxide but do not undergo photosynthesis	[1]

Or 10	(ai)	name of oxyacid	acid chem	ical formula	oxidation state iodine	of		
		periodic acid		HIO₄	+7			
		iodic acid		HIO ₃	+5			
		hypoiodous aci	d	HIO	+1	[2]		
		3 correct : 2m				į		
	(-!!)	2 correct : 1m						
	(aii)	IO ₄ -						
	(aiii)	political political control of the c						
		And the second second						
		LI X	a ģ	T .				
		H • '	Y	*				
		Stanton Control						

	1	1M for correct sharing of electrons between H and O and O and I						
		1M for correct number of valence electrons for H, O and I						
	(b)	lodine is oxidised as the oxidation state of iodine increases from 0 (in I ₂)						
	(10)	to +5 in (HIO ₃). [1]						
		Chlorine is reduced as the oxidation state of chlorine decreases from 0 [(in Cl_2) to -1 (in HCl). [1]						
		It is a redox reaction as iodine is oxidised and chlorine is reduced						
	(ci)	It is a redox readile	carbon	hydroger				
	(61)	mass (in 100g)	26.7	2.2	71.1			
		no of moles	2.225	2.2/1 = 2.	2 4.44			
		lowest ratio	1	1	2			
	or Any logical working							
		Empirical formula of oxalic acid = CHO ₂ ;						
	(cii)	n (12 + 1 + 32) = 90						
		$n = 2$ molecular formula of oxalic acid = $C_2H_2O_4$						
	1 _	molecular formula	or oxalic acid	- C2H2U4		1		