- Find the set of values of a for which $3\alpha x^2 + 1 > \alpha x$ for all real values of x. [3]
- The function f is defined by $f(x) = \tan x \sec x$, where $0^{\circ} \le x \le 360^{\circ}$. Find the values of x for which f is an increasing function. [4]
- 3 Solve the equation $\log_3(x+4) \log_3(2x-1) + 2\log_9(x-2) = 1$. [4]
- The curve $y^2 + 17 = 2x^2$ intersects the straight line y + 4 = x at the points A and B. Find the equation of the perpendicular bisector of AB. [6]
- 5 (i) Show that $\sin 2x (\tan^2 x + 1) = 2 \tan x$. [3]
 - (ii) Hence solve the equation $\sin 4\theta (\tan^2 2\theta + 1) = 2 \cot \theta$ for $0^\circ < \theta < 360^\circ$.
- The function f is defined, for $0 \le x \le \pi$, by $f(x) = 3\cos 3x a$,

where a is a constant.

Given that the minimum value of f(x) is -4, find

- (i) the value of a, [1]
- (ii) the maximum value of f(x), [1]
- (iii) the period and the amplitude of f(x). [2]

Using the value of a found in part (i),

- (iv) find the exact value(s) of x for which $f(x) = \frac{1}{2}$. [3]
- 7 (i) Sketch the graph of $y = |x^2 4x| + 1$. [3]
 - (ii) It is given that the line y = mx, where m > 0, does not intersect the graph of $y = |x^2 4x| + 1$. Determine the set of possible values of m. [2]
 - (iii) Find the coordinates of the point(s) of intersection of the line y = 6 and the graph of $y = |x^2 4x| + 1$. [3]

- In January 2016, Adam bought an antique vase for \$1500. It was believed that the value of the antique vase will increase continuously with time such that it doubles after every 5 years.
 - (i) Formulate an expression for \$V, the value of the vase after Adam owned it for x years. [2]
 - (ii) Sketch the graph of V against x. [2]
 - (iii) Using your answer in part (i), find the number of years that Adam has to wait before the value of the vase appreciates to one million dollars. [3]
- 9 The diagram shows a triangle ABC whose vertices lie on the circumference of a circle with centre O. AP and PB are tangents to the circle at A and B respectively. The tangent to the circle at B meets AO extended at Q.
 - (i) Show that angle $AOB = 2 \times \text{angle } PAB$. [2]
 - (ii) Hence determine whether it is possible to draw a circle that passes through O, A, P and B? Justify your answer with clear explanations. [3]
 - (iii) If triangle PAB is equilateral, prove that OQ = 2OB. [2]

- The equation of a curve is $y = -\sqrt{1+3x}$.
 - (i) A particle P moves along the curve in such a way that the x-coordinate of P decreases at a constant rate of 0.2 units per second. Find the coordinates of P at the instant when the y-coordinate is increasing at a rate of 0.05 units per second.

 [4]
 - (ii) Find the area enclosed by the curve and the line y = -3x 1. [5]

A solid cylinder is cut from a solid cone of height 60 cm and radius 30 cm as shown in the diagram. The cylinder has height h cm, radius r cm and volume V cm³.

- (i) Show that h = 60 2r. [2]
- (ii) Express V in terms of r. [1]
- (iii) Determine the value of r for which the volume of the cylinder is maximum.

 Hence find the maximum volume of the cylinder. [6]

A particle travels in a straight line so that, t seconds after passing a fixed point O_s , its velocity, v m/s, is given by $v = 12t - 2t^2$. The particle comes to an instantaneous rest at A. Find

- (i) the acceleration of the particle at A, [3]
- (ii) the greatest velocity of the particle, [2]
- (iii) the distance travelled by the particle between t = 0 and t = 5. [4]

• 1

:

- 1 The curve y = f(x) is such that $f'(x) = 3e^{-x} + \frac{1}{x+1}$, x > 0.
 - (i) Explain why the curve y = f(x) has no stationary point. [2]
 - (ii) Given that the curve passes through the point (0,1), find an expression for f(x). [4]
- 2 (i) Differentiate $ln(\sin x)$ with respect to x. [2]
 - (ii) Show that $\frac{d}{dx}(x\cot x) = \cot x x\csc^2 x$. [2]
 - (iii) Using the results from parts (i) and (ii), show that

$$\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} x \cot^2 x \, dx = \frac{\pi}{4} - \frac{3\pi^2}{32} - \ln \frac{\sqrt{2}}{2}.$$
 [4]

- The equation of a curve is $y = -x^3 2x^2 x 1$. The point A lies on the curve and has x-coordinate of -2. The normal to the curve at A meets the x-axis at P and the y-axis at Q.
 - (i) Find the area of triangle POQ, where O is the origin. [6]

The point B also lies on the curve. The tangent to the curve at B is perpendicular to the normal to the curve at A.

- (ii) Find the x-coordinate of B. [3]
- 4 (a) (i) Write down, and simplify, the first four terms in the expansion of $(1-x)^8$ in ascending powers of x. [2]
 - (ii) Replacing x by $2z z^2$, determine the coefficient of z^3 in the expansion of $(1-2z+z^2)^8$. [3]
 - (b) (i) Write down the general term in the binomial expansion of $\left(2x \frac{1}{3x^3}\right)^6$.
 - (ii) Determine whether there is a constant term in the expansion. [1]
 - (iii) Using the general term, or otherwise, determine the coefficient of x^2
 - in the binomial expansion of $\left(3x^4 + 2 \frac{3}{x}\right)\left(2x \frac{1}{3x^3}\right)^6$. [2]

5 Do not use a calculator in this question.

The diagram shows a cuboid with a square base. The area of the square base is $(7 + 4\sqrt{3})$ cm² and the volume of the cuboid is $(26 + 15\sqrt{3})$ cm³.

Find

- (i) the height of the cuboid in the form $a + b\sqrt{3}$, where a and b are integers, [2]
- (ii) an expression for BC^2 in the form $c + d\sqrt{3}$, where c and d are integers, [2]
- the value of m and of n if the length of AC is $(\sqrt{m} + \sqrt{n})$ cm, where m and n are integers. [6]

6 The equation of a curve is $y = \frac{\sin x}{2 - \cos x}$.

- (i) Find an expression for $\frac{dy}{dx}$ and obtain the coordinates of the stationary point(s) of the curve for $0 \le x \le \pi$. [5]
- (ii) Find an expression for $\frac{d^2y}{dx^2}$ and hence determine the nature of the stationary point(s) for $0 \le x \le \pi$. [4]

7 The lines x = 2 and y = 3 are tangents to a circle C_1 .

Given that the centre of circle C_1 lies on the positive x-axis, find

(i) the equation of
$$C_1$$
. [4]

Circle C_1 is a reflection of circle C_1 along the line y = x + 1, find

(ii) the equation of
$$C_2$$
. [3]

8 (a) (i) Find the remainder when
$$f(x) = 3x^3 + x^2 + x - 4$$
 is divided by $x + 1$. [2]

(ii) Hence find the value of k for which
$$g(x) = f(x) + k$$
 is divisible by $x + 1$ and factorise $g(x)$ completely. [3]

(b) Express
$$\frac{4x+1}{(2x+1)(x-1)^2}$$
 as the sum of 3 partial fractions. [5]

In the diagram, AB = 8 m, BC = 5 m, $\angle AOB = \angle ABC = \angle BDC = 90^{\circ}$ and $\angle OAB = \theta$ where $0^{\circ} < \theta < 90^{\circ}$.

(i) Find OD in terms of θ .

[3]

[3]

- (ii) Express OD in the form $R\sin(\theta + \alpha)$ where R > 0 and $0^{\circ} < \alpha < 90^{\circ}$. [4]
- (iii) Find the value of θ for which OD has a maximum length.
- The roots of the quadratic equation $2x^2 6x + 1 = 0$ are α and β .
 - (i) Find the value of $\alpha^2 + \beta^2$. [2]
 - (ii) Find the value of $\alpha \beta$ given that $\alpha < \beta$. [2]
 - (iii) Show that $\alpha^2 \beta^2 = -3\sqrt{7}$. [1]
 - (iv) Find a quadratic equation whose roots are $\alpha^2 \beta$ and $\beta^2 \alpha$, in the form $ax^2 + bx + c = 0$ where a, b and c are integers. [6]
- The table below shows experimental values of two variables x and y. It is known that x and y are related by the equation $y = \frac{a}{x-b}$ where a and b are constants.

х	-1.0	- 0.5	0.5	1.0	1.5
у	0.33	0.40	0.67	1.00	2.00

- (i) Express the equation in the form suitable for drawing a straight line graph, with xy as the variable for the horizontal axis.
 - State clearly the variable(s) used for the vertical axis. [2]
- (ii) Using variable xy for the horizontal axis and suitable variable(s) for the vertical axis, draw, on graph paper, a straight line graph and hence estimate the value of a and of b. [6]
- (iii) Show that by adding another straight line on your diagram, an estimate of the solutions for the simultaneous equations $y = \frac{a}{x-b}$ and $y = \frac{2}{x}$ can be obtained.
 - Write down the solutions for the simultaneous equations.

[3]

No. प 4. • September 1994 •

2016 Preliminary Examination Secondary Four Express ADDITIONAL MATHEMATICS PAPER 1 (4047/01)

Answer Key

2
$$0 \le x < 90^{\circ}$$
 or $270^{\circ} < x \le 360^{\circ}$

3
$$x = 5$$

4
$$y = -x - 12$$

5 (ii)
$$\theta = 35.3^{\circ}$$
, 144.7°, 215.3°, 324.7°

6 (i)
$$a = 1$$

(iii) period =
$$\frac{2\pi}{3}$$
, amplitude = 3

(iv)
$$x = \frac{\pi}{9}, \frac{5\pi}{9}, \frac{7\pi}{9}$$

7 (i)

(ii)
$$0 < m < \frac{1}{4}$$

(iii)
$$(5, 6)$$
 and $(-1, 6)$

8 (i)
$$V = 1500 \times 2^{\frac{x}{5}}$$

(ii)

10 (i)
$$x = 11\frac{2}{3}$$

(ii)
$$\frac{1}{18}$$
 units²

11 (ii)
$$V = 60\pi r^2 - 2\pi r^3$$

(iii)
$$r = 20, 25100 \text{ cm}^3$$

2016 Preliminary Examination Secondary Four Express ADDITIONAL MATHEMATICS PAPER 2 (4047/02)

Answer Key

1 (ii)
$$f(x) = -3e^{-x} + \ln(x+1) + 4$$

2 (i) $\cot x$
3 (i) $4\frac{9}{10}$ units²
(ii) $\frac{2}{3}$
4 (a)(i) $1 - 8x + 28x^2 - 56x^3 + ...$
(a)(ii) -560
(b)(i) $\left(\frac{6}{r}\right)\left(2^{6-r}\right)\left(-\frac{1}{3}\right)^r x^{6-4r}$
(b)(iii) -48
5 (i) $2 + \sqrt{3}$ cm
(ii) $14 + 8\sqrt{3}$
(iii) $m = 12$ and $n = 9$, or $m = 9$ and $n = 12$
6 (i) $\frac{dy}{dx} = \frac{2\cos x - 1}{(2 - \cos x)^2}, \left(\frac{\pi}{3}, \frac{\sqrt{3}}{3}\right)$
(ii) $\frac{d^2y}{dx^2} = -\frac{2\sin x(1 + \cos x)}{(2 - \cos x)^3},$ maximum point
7 (i) $(x - 5)^2 + y^2 = 9$
(ii) $(x + 1)^2 + (y - 6)^2 = 9$
8 (a)(i) -7
(a)(ii) $k = 7$, $g(x) = (x + 1)(3x^2 - 2x + 3)$
(b) $-\frac{4}{9(2x + 1)} + \frac{2}{9(x - 1)} + \frac{5}{3(x - 1)^2}$
9 (i) $8\sin\theta + 5\cos\theta$
(ii) $\sqrt{89}\sin(\theta + 32.0^\circ)$
(iii) 58.0°
10 (i) 8
(ii) $-\sqrt{7}$
(iv) $4x^2 - 20x - 87 = 0$
11 (i) $y = \frac{1}{b}(xy) - \frac{a}{b}$
(ii) $b = 2$, $a = -1$

xy = 2, y = 1.5, x = 1.33

(iii)