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Mathematical Formulae

1. ALGEBRA
QGuadratie Eguation

For the-equation ax’ +bx+c =0,

_ —b+ b —4qe

X
2a
Binomial expansion
. t ny ny .
(a‘}‘b)" =an + n ﬂ““b*}- n an—zbl foeet }an—-rbr +“'+bn’
1 2 r,
v \ B oy
where n is a positive integer and o _ne=h el
r} o (n=ritr! rl

2. TRIGONOMETRY
[dentities

sinA+cos’ A=1
sec’ A=1+tan’ 4
cosec A=1+cot’ 4

sin{A+* B)=sin AcosB+tcosAsin B
cos(4d+ By=cosAcosBFsin Asin B
. tar
tan(4 + B) = EnA ttanB
|¥tanAtanB
sin24 =2sin Acosd
cos24=cos’ 4—sm’ 4=2cos’ 4—1=1-2sin* A
2tand

tan2 4 = ———
|—tan” 4

Formulae for AABC
a b _c
sind sin8 smC

a’ =b* +¢* —2bccos A4

A= lbc:sin A
o]

“



Answer ALL Questions

1 Given that y =

®
(i)

2 @

(b)

4
x =2 ,x#0,
. ' . dy
Find an expression for et 2]
Hence, show that y is an increasing function for all real values of x except zero. 11

Given that log, m = n, express each of the following in terms of n.

@) log,(9m*) (2]
. 1
(i) log, - (3]
Solve the equation 2(In x)* +3 ]n[l) =5. [4]
x

3 On a university campus of 6 000 students, one student returned from vacation with a
contagious flu virus. The spread of the virus through the student body is given by

6000
1+ 35999¢™%

S@O=

where f(t) is the total number of students infected after £ days. The university will cancel
classes when 50% or more of the students are infected. Estimate,

®
)

4 (a)
(b)

the number of students infected after 5 days, giving your answer to the nearest 1]

whole number,

after how many days will the classes be cancelled. 3]

Find the range of values of x for which (x—2)(x+3)>6, (3]

Find the range of values of & for which the line y+/kx =8 and the curve x’ +4y =16

do not intersect. (4]

5 The function fis defined by f(x) = 4x° —4x—15 for -3<x<4.

®
(ii)

(b)

Sketch the graph of y =1 f (x)\ , indicate clearly the x and y intercepts. (4]
Determine the set of values of m for which there are two or three distinct solutions for
the equation |f(x)| = m. [2]
, l+sin )
Prove that (sec@ + tan @) = ——— . (4]
l1-sin@
Find all the values of ¢ between 0 and 12 for which sin(zsi = —\/2——§— 3]



7 The diagram, which is not drawn to scale, shows parts of the graphs of y =4cos3x and

y=2smx+k.

y

A

P
Q
y=2sinx+k
> X
) /\
y =4 c0s 3x

(i) State the amplitude of y =2sinx+4 and the period of y = 4cos3x. [2]

(ii) Points P and Q are the respective maximum points on these graphs. Given that the two
. graphs intersect at the x-axis, find the value of k and the coordinates of P and of 0. (6]

8 A particle P is traveling in a straight line with a velocity vms™, given by v=-21> + 7t + 4,

.where ¢ Is the number of seconds after passing a fixed point O. Calculate

(i) the value of 1 at which the particle comes to instantaneous rest, : (2}
(ii) the maximum velocity achieved by the particle, 3]
(iii) the total distance travelled by P fromt=0to 1= 5. : [4]

B

9 (a)

i + 7 +— C

In the diagram, M and N are mid-points of CD and BC respectively. DB bisects ZABC ,
DB =CN and £BAD = /BDC =90°. Prove that AABD is congruentto AMNC .  [4]



®)

10 (a

(b)

[n the diagram, triangle ABC is inscribed in the circle with centre 0. The tangent
at A meets the line EF and BC produced at D, '

Prove that
(i) AMADC and ABDA arec similar. 12]
(i) BDxCD=DE' -~ AE* ' [3]

Itis given that y = (x—2)v2x~1. Find the exact value of x when the rate of

decrease of y 1s three times the rate of increase of x. (s
]

The region 4, shown in the diagram is bounded by the curves y =sin2x, y=cosxand

the x-axis. Find its area. [5]

Yy

A V=COS8 X
1 A !

v
N




11  The pictures below show a load lifter and the close-up of its extensible arm.

The movement of the arm can be modelled with the diagram shown below.

@

(i)

10 cm 40 cm C

In the diagram, APQ is a straight line representing the arm. ABC is a straight line with
AB =10 cm and BC =40 c¢m and CD is perpendicular to ABC. The arm is lifting an
object vertically from point C. P is a variable point on the semicircle with centre B,
radius 6 cm and LCBP = 8. The length of the arm is adjusted so that the point O lies
along the vertical line CD during the lifting of the object.

150smé&

150sind 3]
5+3cos@

Show that CQ =
Find the value of @ for which CQ is a maximum. [5]

~~~~~ End of Paper
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Answers.

T @ &y 5., -2;
; X

Since 3x? +—22— >0 thus % > 0-forall values of x, except x =0
X

=y is an increasing function (shown)

2 (a) ) 1+2n

iy -2n

9w

(b) x=e* or X‘:i
€

x=122 or x=0368{to3s.f.)

3 (i) 12 student
(i) 18 days
4 (@ x<-4 or x23

by —-2<k<2

5 0 53

»

(SRR AN

~3 3
2

(i) 16<m<33 or m=0

. A8)  LHS =(sec®+ tan )
=sec’ @+ 2secHtand+tan’ @
1 2sinf  sin’ @
=gyt Gt TS
cos‘d cos” @ cos‘d

_1+2sin@+sin* 8
~ 1l-sin®@

_ (1+sin8)?

" (1—sin @)1 +sin8)




 L¥sm g (proven)

I—sin

®) 5 10 35

t==,—or =
3°3 3
. . . 2
7 () Amplitude =2 and Period = 120° or 5
(i) 7 .
k=-1 P(0,4) Q(~2—,1)0r (90°,1)
8 () =4

. ) i
(i) max velocity = l()—éms‘1

(iii) 345m

9 (a) Since M and N are mid-points of CD and BC
MN /] DB (Mid-point Theorem)
= LNMC = /BDC =90° (Corr. Zs MN // DB)
= /MNC = /DBC (Corr. Zs MN // ;)B)
Given DB bisects ZABC
= LABD = /DBC = ZMNC
DB=CN (given)
AABD = AMNC (AAS) (proven)

(b (1) ZADC = /BDA (common angle)
LCAD = £4BD (alternate segment theoremt)
S AADC and ABDA are similar (angle-angle similarity test)
(ii) BD _ AD (corr ratios of similar triangles)

AD CD
= BDxCD = AD®

Since AD is tangent to circle
ZDAE =90° (tangent L radius)
:.AD* = DE? — AE* (pythagoras’ theorem)
= BDxCD = DE* — AE* (proven)

10 (a) x=2-2
b)

= units?
4



11 (a) From the diagram; PT is perpendicular 1o AC
AAPT and AAQC are similar (angle ~angle similarity test)

Cg __ 6sind:

<= =——— " (corr ratios of similar triangles)
50 1046¢0os@

_ 150sin@

S+3¢cosd ( )

cQ

®) 8=221rad (t03s.f.)
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Answer Scheme..
@ y=x-2x"
D3y %—
dx X
(b) Since 3x* + -2—2> 0 thus % >0 for all values of x, except x =0
X [
=>y is an increasing function (shown)
(® (@) log,(9m®)=log, 9+ 2log,m

=1+2n

(i) log3.i =log,1—log, m

m

_g_log;m

=~2n

I

2.

®  2(nx)? +3m(l)-s=o
. X

Let y=Inx
2y =3y —5=0

2y -9 +DH=0

y—i or y=-}
5 =

Inxz—i— or Inx=-+1

. o1
x=e* or x=-
e

Accept x=122 or

x=0368(03s.1.)

Mi]

[Al]

[Bl]

(M1]
[Al]

M1]

M1]

[Al]

(M1]

[M1]

(M1]

(Al]



4

()

(i) Whent=5

=12.159 =12 student

(ii) For classes to be cancelled, f(z) >3000

(a)

(b)

6000
1+ 5999¢7%

2> 1+5999¢ %%
1

~ 5999

23000

05 <.

t>=2n ——1—) =17.398
5999

. after 18 days

x*+x—1220
(x+8)(x-3)=0

x4 or x23

y==8~kx
x* +4(8-kx) =16
x* —4kx+16=0

For no intersection, discriminant < 0

16k* ~4(D(16) < 0

kK -4<0
k-2)k+2)<0
—2<k<2
A
33%
Shape of curve [G1]
Coordinates of max pt [G1]
15, x and y intercepts [G1]
/ ‘End value [G1]
-3 3 2 4 > x
2 2

(B1]

[M1]

(M1

(M1}
(M1]

(A1]

[M1]

[M1]

[M1]
[Al]



(il) 16<m<£33 or m=0

(@)  LHS =(secO+tan gy
=sec’ +2secHtanf +tan’ 8
1  2sin@ sin’@
T 0526, 00528 cosl
_1+2sin@+sin’ @

1—sin* @
__ (i+singy
(I—sin 6)(1 +sin 6)
_ l+sin9( roven)
—sing T
(b) sm(ﬂJzﬁ- O0<i<l12 D0<=<=2
5 2 5 5
.3 ’\/g T
a=sin"|—|==
2. 3
m m 2r In
— e | — O
5 373 3
5 16 35
l=—=,—or —
33 3

. | 2
() Amplitude =2 and Period = 120° or —

. (ii) Coordinates of P (0, 4)

Since the two curves intersect at the first x-intercept for y = 4cos 3x,

T
= x=—
6

When x=%,y=.0

0:25‘;:-(5)”(
6

=k=-1

For graph of y=2sinx—1, first maximum is at x =%

When x =

oy

, ¥=1

(B2]

[M1]

[Mi]

(M1]

[AT]

[M1]

[M1]

[Al]
[B2]

(B1]

[Mt]

[M1]

(Al]

(M1}



®

(if)

(iii)

(a)

(b)

.".coordinates of O (%,l ) or (90°,1)

For particle at rest, v=10
~28* +Tt+4=0

(2=t -4)=0 or (2&+Dit-4)=0

t= ——%— (refected) or t=4

For maximum velocity, ‘—(?—’ =0
t
~4t+7=0
7

{=—¢
4

max velocity = —2(1) + 7(2) +4 = 81 = IOl ms™
\4/ - \4 8 8

3 2
s=.[vdt=—~2£~+—7t—+4ti‘rC
3 2
Whent=0,5s=0 =>C=90
Whent=4,s= 29% m
J
When t=5, s = 24.17m

. total dis tance =29 é— + (29% —24.17)) =345m

Since M and N are mid-points of CD and BC

MN // DB (Mid-point Theorem)

= LNMC = ZBDC =90° (Corr. Zs MN // DB)
= LMNC = £DBC (Corr. Zs MN // DB)
Given DB bisects ZABC

= LABD = £DBC = ZMNC

DB=CN (given)

AABD = AMNC (AAS) (proven)

(i) £ADC = 4BDA (common angle)
LCAD = ZABD (alternate segment theorem)

[Al]

(M1]

[AT]

(Mi]

(Mi]
[Al]

(M1}

[MI]
[Mi]

[Al]

(M1]

(M1]

(M1]

(Al]

(M1]



10 (a)

(b)

L.AADC and ABDA are similar (angle-angle similarity test)
(i) '_ %: «-’g— » '-'_(:jcorr- fatiOS'- of similar triangles)
= BD%CD= 4D’
'Since.AD is.tangent to circle
ZDAE=90° (tangent L radius)
. AD* = DE? — AE* (pythagoras" theorem)
= BDxCD = DE* - AE* (proven)

y=(x—2DJ2Zx -1

'3

D BT e e e
I 2x—14+(x Z)L?.JE:—]](Z)

ay _ 2x~1+x-2  3x-3

dx S2x—1 Jax-d

Q_____f_lzxcbc

dt dx dt

2x-1=1-2x+x’

Lo 3B 40O

2

x-=2-.t\/§

Therefore, x =22 since % <0
X

cos x =sm2x
‘CO$ X = 2SN XCOS X

[Al]

[M1]

[M1]
[Al]

[(M1]

[M1]

M1]

[M1]

(Al]

(M1]



cosxX(2sinx—1) =0

R e b 7T {Ml]
=xE— or -
: ) M1
Area = E sin 2xdx +J§cos‘ xdx [M1]
%

~ [—cozs ZXT +[sin xE | M1]

=2 ynits*
4

[Al]
1f (@)

10 em T

N ]

40 cm

From the diagram, PT is perpendicular to AC

AAPT and AAQC are similar (angle —angle similarity test) M1]
CO  6sind

—==————— ({corr ratios of similar triangles)
50 10+6cosd

[M1]
CO= 150sind (shown) [Al]
S5+3cosé

d (5+3cos 8)(150cos &) — (—3sin 8)150sin §)
by 2 = : M1
®) do (o) (5+3cos89)* (M1}




_ 7500080 +450
~ (S+3cos)
For maximum CQ,
d 7500058 +450
76D =" ey
750 cos @+450=0

cos@z—3
5

0=221rad (to3s.f)

g - 221

2.21

2217

d ,
%(CQ)

0

~.when =221 rad, CQ is max.

MI]

[M1]
[Al]

[Al]
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‘Mathematical Formulae:

i. ALGEBRA

Quadratic Equation
For the equation ax” +bx+c=0;
~b+VE —4ac
r= -
2a

Binomial expansion

2

(a+b)' =a" + o+ n}a"‘ebz roet] @b 4w,
1 2 r

nt a(p-1)..(r—r+l)
(n—r)trt - rt

- ‘¥ - p n
where n is a-positive integer and ( ) =
\F

2. TRIGONOMETRY
Identities
> sin® A4 4cos’ A=1
sect A=1+tar® 4
cosec' A =1+cot’ 4

sin{Ax B)=sin Acos B+ cosdsin B
cos(A =+ B) =cos AcosBFsinAdsin B
tanA4 ttanB

tan{(d+ By = —————
o 1¥tan4dtanB

sin 2.4 = 2sin AcosA
cos2 A =cos* A—sin®* A=2cos? 4—1=1-2sin’ 4
2tand

tan2Ad = ————
1-tan® 4

Formulae for AABC

a b c

sinA sinB smC
al =b*+c? —2bccos A

A= lbcsin 4
2



Answer ALL Questions

2
1.  The roots of the quadratic equation 3x* + —z—;]- =3x are a® and B2.

(i) Find the value of ¢+ f and of aff where @ and f are both negative. {5]
(i) Hence find the quadratic equation whose roots are a’® and f°. [4]

2. Given f (x)=2~24sinxcosx and g(x) = 10(1 +cos’ x).

(i) Express the sum of f(x) and g(x) in the form Rcos(2x+a)+q where R and g are constants

and R>0,0<a<%. (5]
_(if) Hence find the minimum value of 2 and the corresponding values of x for 0 <x<2x%.
R f(x)+gx)
(3]
. d 2 ,
3. () Show Iln(tan 3x)=12cosec6x [4]
X

+—L  with respect to x. _ [4]

(ii) Hence integrate —
sin6x 3e*7*

4.  The diagram shows a right-angled trapezium ABCD such that 248 =3 CDand 4B is parallel to DC.

Given the height BC of the trapezium is (3 -3 )cm and area of the trapezium is (2 +343 )cmz. )

v, C
A g
E F','m’d length CD in the form (a +53 )cm, where g and b are rational numbers. {5]

5. () The sum of the second and third term of the expansion of (1+kx)" is 60x+1740x . Find the
value of & and of n. {51

(ii) Hence write down the first 4 terms in the expansion of (1 + kx)" in ascending powers of x. [2]

11 ence determine the coefficient of & in the expansion o +K\a—2Za .
iii) Henced ine th fficient of a’in the expansion of {1 + kla — 2a? [3]



An experiment to find the constant acceleration, a m/s?, of an electric toy car moving in one direction,

requires students to measure the speed, v m/s from the speedometer when distance, s m varies. The

table below shows the experimental values of v and s, which are connected by the equation

v=+e” +2as , where p is a constant.

80

B |

(i) Plot v* against s and draw a straight line graph. Hence determine which value of v, in the table

above, is the incorrect recording. Using your graph to estimate the correct v value.

(ii) Use your graph to estimate the value of @ and of p.

(iii) Explain what does the value 6f ¢” represents.

(iv) By drawing a suitable straight line on your graph, solve s :(

120-2¢")
4a+3 |

Start on a fresh sheet of writing paper and tie answer script from question 7 to 11 together.

(i) Explain whether the curve y =4 —3¢** has any stationary point.

(ii) Sketch the graph y =4 —3e”" indicating clearly the asymptote and x and y-intercepts.

‘ 4 . - .
(iii) Hence solve 2x=1In (l - gx) by inserting a straight line on the same graph in part (ii).

(i) Factorise 8x° +4x” —2x—1 completely.

(ii) Hence express ( 2x 42

e Tl —ox *D in partial fractions.

(4]
(3}
(1]

(2]

[3]
(4]

(iii) The polynomial 8x’ +4x? —2x—1 leaves a remainder of {px+¢) when divided by (xz ~1).

Find the value of p and of q.

(4]



10.

I1.

7 L 3
Given the curve y=§x Zand y=—x2 .

27
(i)  Sketch the two graphs on the same diagram for x > O and label the graphs clearly. {21
(i) Calculate the coordinates of the point of intersection of the two graphs drawn in (i). 31

The -gradient function of a curve y =1 (x) is given by m+n{3x—2) . A point P lies on the curve and

its x-coordinate is 2. The equation of the normal to the curve at P is given by 37y =9x-129. The

. . . .5
curve has a taming point at O whose x-coordinate is 3

(i) - -Show that the value of mis 3 and n is —% . {3}
(i) Find the equation of the curve. [4j
(iii) Find the area of triangle POR where R is the point the curve intersect the y-axis. . [4]

Given that a circle C; passes through the point 4(2,0), B(5, 1) and C{(6,0).

() Show that the coordinates of centre D of the circle Cy is (4,~1) and hence find the radius of the
circle. - (6]

(ii) Find the equation of the circle C; in standard form. 1]

(ili) Given 2 tangents are drawn from a point E to touch the circle at point B and C. Find the

coordinates of point £. . [5]

(iv) Explain why a circle can be drawn to pass through the points B, C, D and E. Hence find the

...-.coordinate of the centre of this circle. {3]

End of Paper



Answers

2 3 3
1y #=3 77 09
(e + B)=2(ref) or~2

2) f(x)+ g(x) =13c0s(2x-+1.18)+ 17

L nfian?3x)+ L2 4o OR
i) T2 N 5
3ii) ) l
- hl(i'a’n 3x)+ Loz,
6 9

4 CD=2+22 53

15
L k=2 o 1+ 60x +1740x% +32480x° +...
5i) 5ii)
n=30
6)
S 1 1 1 80
4— 17— | 37—
6 2
vz 9 25 36 100
. ’-' fv= : . = .
6ii) incorrect v =6m/s i) ¥ In4 or1.39
corrected v =7 a = 0.605

6iv) £=20.5 or 21m

- dy

5 <% 2}- # 0, no stationary point

A 4

o1ah

7iii). x=0].

21i) r’n,i:'u%‘g ,x=255 570

Siil) coeff.of 2’ = 25520

e’ representsthe square of initial speed

6iii) or square of initial velocity



81) (2x—~1)ax® +4x+1)= (2x 1) 2x+1} - sii)

9ii) (1.5, 0.544) or @ -;‘-JE)

10iit). y=3x— T(l)_s (3x—-2)" - %9-

R=+5

(x—4')2 + (y+ I)Z =35

(2.3
3°3

11) Since £DBE = ZDCE =90°

(tangent perpendicular to radius).

 2x+2 3 3

(8 +4x? —2x—1) 4@2x-1) 4(2x+1)
e
202x+1)

10iii)

B

. A circle with diameter DE (£ in semicircle ).

a+tl 142

Centre

3 3_[29
2 02 6

J
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Prelim Exam (3) 2016 Additional Mathematics Paper 2 - Secondary 4 Express

Qn Suggested Solutions Qn Suggested Solutions
No No
1i 3x2+£=3x_ 21 | f(x)+g(x)=2-24sinxcosx+10+10cos® ¥
27 =12 —12sin 2x+10(°°—321‘-ﬂ)——— M1
3x? —3x+ =20
4 =12-12sin2x +5c0s 2x +5
xz—x+%=0 ==174+5cos2x—12sin2x M1
12
(ap)? :% il wn f(x)+g(x) =13cos(2x +1.18)+17 [
3 3 :
aﬁ*‘-; or —— (rey) Al min | —- 2 = 2
2 2 ) F(x)+g(x)) 13cos(2x+1.176)+17
ey o2 —Tm] | N
2 211 13417 15 | M
(a+p) =4 cos(2x+1.176) =1 M1
(a+ B)=2(rej) or-2 Al basic angle =0
(2x+1.176)=0(re)) , 27, 4z
o'+ =(a+p) -3aba+p) x=2,55 570 Al
| — 2oy o 3 )
- B0 |y | L ufws9- Lomanso
= et 04 2
(aﬂ)3 =(—) — M1 tan 3x
2 _ 6sec’ 3x
_27 tan3x
8 _ 6(cos 3x)
\’2_’”__2_7”:0 cos’ 3xsin3x
1 Al _ 6
cos3x sin3x M1
k .o l 1 1 1 3x-2 12
+ = +—e " dx =
3 I sin6x  3e** I sin6x 3 Sin6x M1
=Lln(tari2 3X)+__l_e3x-2 ‘e M2 =12cosec6x (shown) Al
12 3(3)
= —}—In(ta.n2 3x)+ ~!-e3"‘2 +¢ OR
12 9
= lln(tan?»x)-# L A2
6 9




61

6ii

7ii

Let AB=3xand CD = 2x 51
%(3x+2x)(3—\/§)= 2+343 M1
5x 2+ 343
3-43
5x 2+ 3J_ 3+43
M1
3~ \/— 3+43 :
_5_5 _6+23+93+3(3)
2 9-3
Sr_15+1W3
2 6
=1 + - M1
511
Cch=2 + — AL
B1
S Siii
4—1— 17-1— 37l 80
6 2 2
v? 9 25 36 100
Straight line graph of correct axes B1
incorrect v=6m/s M1
vi=49
corrected v =7 Al
gradient =§—(3):%§=1.209 —{m -
1
v? = e” +2as
ef =4
p=1n4d orl.39 81 61v
2a =1.209
a = 0.605 Al
y1; =dx+1 M1
4
/" ol144 o\% l i
"3 7i
y=4-3e* B1
x and y —fntercepts — | 81
Asymptote, y=4 | .

=]

(14 k) = (’;)(kax){;‘](;)(kx)z R

= s 20D

1

60x +1740x7 +...

Ml

izk =60
nin-1)

——2&* =1740

M1

n*k? —nk® =3480
60?2 — 60k = 3480
k=2
n=230

Al

1 Al

(1+2x)° =1+ 60x +1740x* + .(330)(1)(10;)3 +

= 1+60x +1740x* +32480x> +...

| B2
(1+kla-227) =1+60(a—2427) .
+1740(a - 24} +32480{a - 247} + .. E
=1740(2)a)- 2a* )+ 324802’
= -6960a° +32480q° + | M!
= 25520a° +..
coeff.of a° = 25520

Al

ef representsthesquare of initial speed
or square of initial velocity| 81

_ 120-2¢*
4a+3

s{4a+3)=120-2¢”
2¢” +4as =120-~-3s
ef +2as=60-1.55

v? = 60-1.5s Draw theline—1 M1

§=20.5 or 2lm Al
dy 2
= 6 x
dx M
dy dy
e <0, o # 0, no stationarypoin

Al




7ii1

81

91

9ii

2x=1n(l-ix)

e =1-—x
3¢ =3—4x
4x=3~3¢"
4x+1=4-3*

8it

y=4x+1 (Draw thisstriaght lin€j

M1

x=0 Al

8x’ +4x* ~j—!2x -1

by trialand error, let x = %

3] ) A3

= (2x—1)is a factor

M1

Ax* +4x+1
8x® +4x? -2x-1

- (8x3 —4x° )

2x -1

8x? ~2x~1

- (8):2 - 4x)
2x -1
~(2x-1)
0

8iil

Al

(2x = 1)4x? +4x +1)= 2x —1)}2x +1)’
y ¥\

B2

1 5
Zx'i — i-‘,‘ci
3

27

M1

thus’x=% or -% (rej)

M1

Al

(1.5, 0.544) or 8 -5-\/5)

2x+2 _ 2x+2
(8x° +4x* —2x-1) (2x-1){2x +1)’
2x+2 4 B
(2x-12x+1)

= +
2x=-1 2x+1

+ C
(2x+1)2

M1

2x+2=A2x+1)* + BQx-1)(2x + 1)+ C(2x

1 1 1
Let x=—, 2(=)+2=AQ(=)+1)?
of x=3 (2) ((2) )

4= —m
4
Let x=~—, 2(—1)4,2:(:(2(--1—)—1]
2 J
c=-1
2
Let x=0, 2=A-B-C
B_—_..z — M1
4
2x+2 3 3
(8¢ +ax® —2x-1) 42x-1) 4(2x+1)
i — 1 Al
2(2x +1)°

Letx?—=1=0, x=1orx=-1
8(1)° +4(1)2 ~2(1)-1=p+gq

ptg=9
8(-1)° +4(-1)* -2(=1)=l=~-p+gq
g-p=-3 M1

g=3andp =6
OR

M1

A2

Sx+4
x? «II 8x* +4x? =2x -1
—(8x3—-8x)
4x* +6x—1
-(4x* - 4)
6x+3

M2

p=6, q=3 b A2




101

1011

1011

f(x)=m+n(Bx-2)

A

m-+ n(27) =0
m=-27n

(eqn1)y

mi

9 129

x
37

37
gradient of tangent = --3-9]-

men(3@2)-2f = -3

m+64n = —3—7
9

(eqn 2)

M1

n= —%, m=3 (shownj

Al

£ (x)=3 —é(3x ~2y

M1

1, )
—3x—— (3x—2) +
y=3x—rgBr=2) +e

37y =9(2)-129, y=-3

-3=3(2)- T(%g (3(2)-2) +c
179

27

M1

y= 3x—]~:)—8(3x— 2)4 —l;lg- (eqn of curve)

101

111

Al

1111

1111

M1

Al

M1

111

1 2 ‘:5; 0 2
Area=~2-_ —%52 _§9_1 _3 -
108 ‘
“i/-?ﬁ-[-ﬂ))
2 18 9 J
=3
2 Al
6+2
= 2 =4 mi M1
Vo —0F +(@-2) = /(5-4) + (1 - yo)
yp=-1, D(4,- 1) {(shown) a1
R=/(5-4) +(1=(=1)} =5 ny
M1
(x=4) +(y+1) =5 BL |
;\A;i)B:lj(——-l):z> MBEZ——!— —_—— M1
y=——%x+C
1
l=——(5)+C
o8
C=3.5, Y=—%X+% (equation BE)| "* |
Mm:u_l.—__{).—_—:l’ MCE=—2 M1
4-6 2 I
y==-2x+C
0=-2(6)+C

C=12, y=-2x+12 (equation CE)
17 2)

3/I Al

il k2, B[,
272 3

Smce £DBE = £DCE =90°

M1

(tangent perpendicular to radius).

M1

-. A circle with diameter DE (£ in semicircle ).

3 {2 1

**% End of Paper ***

Al

)

B1




