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Mathematical Formulae

1. ALGEBRA

Quadratic Equation
For the equation ax* +bx +c =0,

Binomial Theorem

(a+b);z =an +(T\)an—lb+(;)an-2b2 +”'+(n)an-rbr +"'+b",
/ Y

r
{72 .1l — _ +1
where 1 is a positive integer and- = = nn—1)...(n - r + 1)
r (n—ritn ri
2. TRIGONOMETRY
Identities
sin®Ad+cos*d=1.
sec’A=1+tan’ 4.
cosec ‘A =1+cot’ 4.
sif4 + B) = sind cosB + cosAsinB
co§A + B) = cosAcosB FsinAsinB
+
tan(4 + B) = t;inA_tanB
1 ¥ tan 4 tan B
sin 24 = 2 sin 4 cos 4
cos 24 = cos® A —sin” 4 = 2cos? A -1 =1-2sin? 4
{an 2A - __.g._@..__ld__
1 - tan? 4
Formulae for ABABC
a b <

sin A - sin B N sin C
) ,
a’ =b* +c* - 2bccosA

A:labsinC
2
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Answer all the questions.

1. The equation of a curve is given by f(x) = 2x3 — 12x — 5. Find the range of values of
x for which f(x) is an increasing function.

Given that (3k — 5)x% + (kK — 5)x — 2 = 0 has no real roots, what condition
must apply to the constant k?

From your results in part (i), determine if y = (3k —5)x% + (k~5)x — 2
has a minimum or maximum point.

3. A sky diver jumps from a certain height above the ground. The downward vclo.ci.ty,
v m/s, of the sky diver at time ¢ seconds is given by v = 30(1 — ¢ %26),

)
(ii)
(iii)

4, (i)

(ip)

Find the initial velocity of the sky diver.

Find the velocity of the sky diver after 5 seconds.

Showing your working clearly, explain why the velocity experienced by the sky
diver will not exceed 30 m/s.

Find the values of log, x that will satisfy the equation
2(logs x)? = log, x + 6.

Sketch the graph of y = log, x and indicate clearly on your graph the location of
the values of log, x found in part (i).

Hence, show that the product of the two roots of the equation

2(logsx)? =log,x + 6
is positive.

(31

Bl

2]

(1]
1

(2]

[3]

(2]

[1]



5. A vertical wall AB is 2 m high and 2 m away from a warehouse. PQ is a ramp resting on
the wall AB and just touching the ground at P and the warchouse at Q. The ramp PQ is
of length L metres and makes an angle 8 with the horizontal.

(i) Show that the length of the ramp, L, is given by
’ : . 2 2

= — 1
sinf  cos@ [
.. dL _ 2sin6-2c0s38
. , = e e 2
(ii) - Hence, show that 5 —5ioig [2]
(iii) Given that @ can vary, {ind the shortest possible length of the ramp. {s]
6 (i) Sketchthecurve y? =9xfor0 <y <12 2]
The line 4y — 3x = 9 intersects the curve y* = 9x at two points P and Q.
(i) Find the coordinates of the midpoint of PQ. (6]
. . sin (A-B) __ 3
7 (i) Given that sn(atE) 2 prove that tan A+ 5tan B = 0. [3]
(ii) Hence, solve the equation 2sin(26 — 30°) = 3 sin(26 + 30°) [5]

for 0° < 8 < 360°.



8 The diagram shows part of the graph of y = {3 — x| — 2.

yT

y={3—x|-2

™N

(i) Find the coordinates of A, B and C.
A line QR of gradient 1 cuts the y-axis at (0, p).
(ii) State the number of intersection(s) of the line QR and y = |3 — x| — 2 when
(@ p=2
® p=-6

(iii) Determine the set of values of p for which the line QR intersects y = |3 — x| — 2
at only one point.

9 A particle travelling in a straight line, passes a fixed point O on the line with a velocity of
9m/s. The acceleration, a m/s?, of the particle t seconds after passing through O is
givenby a = 8 — 2¢.

(i) Show that the particle comes to instantaneous rest when t = 9.

(ii) Find the average speed of the particle for the journey from ¢t =0 to ¢ = 12.

(4]

(1]
{1

(1]

B3]
(31



10 The diagram shows a circle passing through the points P,Q,R and S. SQU is a straight
line that cuts RP at the point T. VRU is a tangent to the circle at R such that SR = RU.

4 R H Y

Prove that

(i) angle SPT = 2 X angle QPT, {4]

(if) triangle QRU is similar to triangle RSU, 2]
(iii) QR X SU = (RS)? (2]
11 A container has a capacity of 960 cm3 and is initially completely filled with water. The

volume, V cm?, of water in the container is given by V = h% + 2h where h cm is the

height of the water level in the container. Due to leakage at the bottom of the container,

the height of the water level in the container decreases at a rate of % cm/s.

(i) Find the initial height of the water level in the container. (3]

242
[2]

. . ) t .
(i) Show that the height, h, can be expressed as — 3—4— + ¢, where c is a constant.

(3]

(iii) Find the rate of change of volume when t = 4.



7
12 (a) The diagram below shows part of the curve f(x) = 3 sin(px) — q.

f(x)
= T x .4 had ol “ sm am 7@ 2 ew “x
4 2 4 4 2 4 4 2 4 4
A
/
B
The coordinates of the turning points are A(%n., —2)and B (%z, -8).
Find the values of p and q. [2]

(b) The diagram below shows the graph of y = x?+2. The shaded region from x = a
10 x = —a has an area of 6a units?. Find the exact value of a. [5]

v

END OF PAPER






Answer key:

ot s W N e

7(ii) -

8(1)

9(i)
(ii)

11(i)

x<—2 or x> 2

® —15 < k < 1; (ii) maximum
D0m/s (ii)19.0m/s

(i) —%: 2

: (iii)% , 5.66m

(i)

A

P2f==mmmomo e mmeao

A 4

16
(i) (5,6)
54.6°, 144.6°, 234.%2 324.6
(5,0) (ii)(a)1 (ii)(®)O (iii)p > -5
v=8t—t*+9

s=4t2~S+9t; 18m/s

2
30cm (i) h=—2-+30 (i) —228 cm?/s

12(a)p=-§-;q=5 (b) a=+3
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1 f(x)=2x3-12x-5
f(x) =6x%—12 \ /
For increasing functions, f'(x) >0 5 7"
6x2—~12>0 f\/
x2—=2>0
(x +V2)(x—+v2) >0

- therange of values of xis x<—v2 or x> V2.

2(i)) Bk—-5)x?+k—-5)x—2=0
No real roots = discriminant < 0

(k—5)2—-4@k-5)(-2)<0 -

k2 — 10k + 25+ 24k — 40 < 0 ’

k? +14k - 15<0 R

(k+15)(k—=1) <0 ‘15\/
—15<k<1

2(ii) coeffofx? =3k —5
Fromabove, - -15< k <1
~45 < 3k <3
—-50<3k—-5<-2

Since coeff of x? < 0, the function has a maximum point.

Alternative method:
y' =2@k—-5)x+ (k—-5)
y =23k —5) = 6k —10
From (i), since—-15 <k <1, 6k-10<0

= y <0 Vx }
= y = (3k —5)x*+ (k — 5)x — 2 has a max point.




3 v=30(1-e%%)

i) initial velocity, v = 30(1 —e®%) = 0m/s

if). whent=5uv=30(1~e")=30(1-2) or19.0m/s
iif) since £ =0, 0<e ™t <

= max(l—e %) <1 }

= 30(1 — e %2) < 30 }

=~ the velocity will never exceed 30 m/s.

4i)  2(logsx)? = (logsx) + 6

Lety = log, x

2y’ =y+6

2y2—y—6=0
2y+3)y—-2)=0

y=——2— or y=2

~ logyx = —% or logsx =2

4ii)

From the graph, wheny = —% and y = 2, the x values are both positive.

= the product of the two roots of 2(log, x)? = (log, x) + 6 is positive.



5) L =PB+BQ
. A 2 A
= — = =/
sin § PB PB sin@
2 2
f=— =BQ=
cos BQ Q cosé@
2 2
L=—— A
sing + cos @ [ G]
. dL —2cosé 2sin@
511) d6 = sin?@ cos2 8
2sin30-2cos3@
T sin208cos26- [AG]
. dL
5iii) For max/min, == 0

2sin30 — 2cos36 = 0

sin30 = cos36

tan36 =1

tanf8 =1

g == 0<g<=Z
4 2

Uisng 1st derivative test,

T T Tt
4 4 7
- 0 +
dL
] \ /
— |/

~ shortest possible length of the ramp

_ 2 2

sinZ cos>
4 4

=566m [5.6568]



61)

6ii)

A
y? =9x
1

i
I
|
1
i
{
i
I
|
I
16 i

4y —3x =9

Subsy = 3{—? into y? = 9x

3x+9)2 _

( 4 ) = 9x

x2—10x+9=0

x—DExE-1=0

x=1o0or x=9

x-coord of midpoint of PQ = En

y-coord of midpoint of PQ =.3(5‘2+9 =6

.. coords of midpoint of PQ are (5,6)



7i)

7ii)

sin(A-B) _ 3
sin(a+B) 2

sin A cosB-cosAsinB __ 3

-

sinA cosB+cosAsinB 2

2(sin A cosB - cosA sinB) = 3(sinA cosB + cosA sinB)

sinA cosB + ScosAsinB =0
Divide throughout by cosAcosB,
s tand + 5tanB =0 [AG]

2sin(26 — 30°) = 3sin(28 + 30°) can be written as

sin(26-30°) _ 3
sin(260+30°) 2

Compare with (i) andletA = 26 and B = 30°,

~ tan28 + 5tan30° = 0 using result from(i)
tan28 = -5 (%)
base angle, @ = tan™?! (—5—) = 70.893°
> ‘/5 .

26 = 109.106°, 289.106° 469.106°, 649.106°
w0 = 54.6°, 144.6°, 234.6°, 324.6°



8i) y=I13—x|—2
AtAx=0y=3-2=1
- A(0,1)
AtBmin|3—x|=0=x=3,y=-2

» " o -

= B(3,-2) TR
AtC,y =0, |3—-x|-2=0
[3—x| =2
3—x=2 or 3—x=-=2
x=1 or x=5

% C(5,0)

8ii) lineQR:y=x+p

a) Whenp =2,

no.of intersections =1
b} Whenp = -6,

no.of intersections =0

8iii) set of values of p for which no. of

intersectionsis 1,is p > =5




9) t=0s, v=9m/s, a=8-2t
) v=/fadt
= [(8—2t)dt
=8t—t?>+c
Whent =0,v=9
8t—t>+c=9
c=9
cv=8t—t*+9

At instantaneous rest, v = 0,
s8t—=t*+9=0

t2—-8t—-9=0
{+D{Et—-9=0

t =—1(reject) or t=9s [AG]

9i)) s=[vdt
= [(8t —t* +9)dt
3
=4¢2 -—%—+9t+c
- Whent=0,5=0 =2¢=0
t3
-‘.s=4t2—;+9t
Atinstantaneousrest,v =0, t =9, s = 162m
t=12, s=108m

Total distance = 162 + (162 — 108) = 216m

216m
- average speed= . = 18 m/s

sm



10) LetsRSU =x 4 R U

then 4RUS = x (base 4s,isos A)

4QPT = 4RSQ
= x (4s in the same segment) g

4SRV = 2x (ext & of ASRU)

ASPT = 4SRV (alt segment thm) P

= 2x
-~ ASPT = 2 X 4QPT [AG] J
10ii) From (i), #QUR = 4RUS (common4) - - .
AQRU = ARSU (alt séegment thm) }

ARQU = 4SRU (4 sum of A) -
= AQRU is similar to ARSU (AAA similarity)

10iii) Using ratio of corresponding sides of similar AsQRU & RSU,
QR __RU
RS sU

QR x SU = RU X RS
QR x SU = (RU)? [AG] (~ RU = RS given)



11) Given:Vol =960cm3att=0; V="h2+2h; Z=-%cm/s
11i) h? + 2h = 960

h? +2h-960 =0
(h+32)(h—-30)=0

h =30 or h= —-32(rejected)

~ initial height of water is 30cm.

. dh 3t
i F=-3
3t?
= ——-4C

when t=0, h=30
=c¢=30

2
wh=-34130
4

dv dv __ dh

i) = X%
3t

=@h+2)x(-%

= [2(=5F+30)+2]x(-3)
whent = 4, rate of change of vol

v
 dtley
— 228 cm3/s




iZa) f(x) =3sin(px) — g

_ -2+ (-8)
1=
= -5
qg=>5
eriod = 2m
P p

From the graph, period = -gf — —3;75) X2=3n

12b) Since graph of y = x% + 2 is symmetrical about the x-axis,

6a

a
Jo ydx ==

a ' 6a
fo (x2+2)dx=—é—
a

[%3 + Zx]0 = 3a

533+2a=3a
a®+6a—9a =0
a®—3a=0
a(a?-3)=0

a = 0(rejected), a*> =3

~a=+3 sincea>0
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Mathematical Formulae
1. ALGEBRA
Quadratic Equation

For the equation ax® +bx+c¢ =0

_—bxVb* —4ac

2a

X

Binomial expansion

. e

o n(n-1)..(n—r+1)
-t . !

. .. n
where n is a positive integer and ( )=
r

2. TRIGONOMETRY

Identities
sin? A+cos? A=1
sec’ A=1+tan’ 4
cosec’d =1+cot’ 4
sin{A4 & B) =sin Acos B tcos Asin B
cos(A* B)=cos Acos BFsin 4sin B
tan 4+ tan B
iFtanA4Atan B
sin2A4 =2sin Acos 4
cos24=cos’A-sin’ A=2cos’ A—-1=1-2sin’ 4
2tan 4
1-tan® 4

tan(4 + B) =

tan24 =

Formulae for AdBC
a b ¢
sind sinB sinC
a’> =b* +c* —2bccos 4

=ibcsinA
2

4047/02/Prelim 2/2016



3

1" () Sketchthegraphof y = 2x3 for x > 0. [1]
1

(i) On the same diagram, sketch the graphof ¥ = 16x 2 for x > 0. 1]

(iii) Calculate the x-coordinate of the point of intersection of your graphs. 21

2  (a) A polynomial f(x) hasaremainder of —2 when divided by (2x + 1). Showing your
method clearly,
(i) find the remainder when f(x) — 1 isdivided by (2x + 1), 2]
(ii) find in terms of f(x), a polynomial which is completely divisible by (2x + 1). 2]

(b) A polynomial g(x) can be expressedas g(x) = (x% — x — 2)P(x) + ax + b,
where P(x) is a polynomials in x. Given that g(x) leaves a remainder of —7 when '
divided by (x — 2) and a remainder of —19 when divided by (x + 1)
(i) Find the value of g and of . . {5}
(ii) Find the remainder when g{x) is divided by (x — 2){(x + 1). 1

3 Do not use a calculator in this question.
(a) (i) Simplify (2— v5) . [1]
(ii) Given that x = 2_1-—-——-@ , find the exact value of x?+ x — 2 31

- (b) The volume of a cuboid with a square base is 19 + 11+/3 cm3. The height of the cuboid

is V3 + 1 cm and the length of each side of the square base is a + Vb , where
a and b are integers. Find the values of a and of b. [6]



4

4 (a) The roots of the quadratic equation 2x? 4+ 5x —1 =0 arc tanA and tan B.

() Find the value of tan(4 + B). 3]
(i) Find the value of sec*(4 + B). 2]
. 2 2 2
(b) (i) Show that e T T = 4 sec*3x. 2]
2 2
(i) Hence evaluate [12 oo 9 (2]

5 A curve has the equation y = 3x%e™".

. . . d . . ) .
(i) Find an expression for £ and obtain the coordinates of the stationary points
p = yp
of the curve. (51

(i) Determine the nature of these stationary points. [6}

6 (a) Find in ascending powers of x, the first four terms in the expansion of (1 + x — x%)%. [4]

12
(b) (i) Find the term independent of x in the expansion of (23(2 - %) . [3]
. . . - 9 1 12
(ii) Determine the constant term in the expansion of (3 + 4x3) (Zx“ - —) . (4]

2x

6
(2x-5)%

! a2
7 A curve is such that —% =
dx?

The equation of the tangent 1o the curve at the point (3,-1)is y —2x + 7 = 0.

(i) Find an expression for % . 4]
(ii) Find the equation of the curve. [5]

4047/02/Prelim 2/2016



8  The table shows experimental values of the variables x.and y.

X 1

2

3

4

y : 0.4

0.6

1.6

34

.-dt:is known that x and y are related by the equation of the form p(x +y) = pqg + qx*.
(i) Plot x + y against x2, draw the straight line graph and use it to estimate the

value of p and gq.

(ii) Using your values of p and ¢, find the values of x for which p(x? — 2q) = 2gx*%.

4y-3x=0

L CRY)

The circle with centre C(3, 1) touches the x-axis at 4. The line 4y — 3x = 0 touches

the circle at B,

Find the coordinates of B.

- (b) The equation of another circleis (x —4)* + (y + 1)? = 4.

The line y = mx is a tangent to the circle. Find the possible exact values of m.

~—~~y ] —~

AN API IS TS 3

(6]
(2]
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11.

2
(a) (i) Express ;sz—?ﬁ-i in the form of ax + b + ——+2 [2]

ot x=2°

d
(i) Using the values of ¢ and d found in (i), express ot

X2+ x-2
sum of two partial fractions. [3]
(b) A curve has the equation -y = - \/%
(i) Differentiate y with respect to x. {3]
(ii) Using the result in part b(i), determine f 2’2::2 dx. [2]

[
F

The diagram shows two circles, €, and C, with centres 4-and B respectively. The two circles
touch each other at D. C; has radius 3 units and touches the y-axis at E. C, has radius 2 units and
touches the x-axis at /. The lines AB produced meets the x-axis at G and

angle BGO = 0 radians.

(i) Show with clear explanations, that OF = 5sinf + 2 and OF = 5c0s8 + 3. 21
(i) Show that EF? = 38 + 20 sin8 + 30 cos 6. [2]
(iii) Express EF? in the form 38 + R cos(@ — a), where R > 0 and « is an acute angle. [3]

(iv) Giventhat EF? = 65, find the value of 6. 2]
END OF PAPER

- - 4047/02/Prelim 2/2016
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f gt
o
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5
1 | (i) Sketch the graph of y = 2xz for x > 0. (1]
1
(i) On the same diagram, sketch the graph of y = 16x 2 for x > 0. (1]
| +(iii) Calculate the x-coordinate of the point of intersection of your graphs. 2]
11 a)
2] ] Bl
oh e

N . .
3 s
1 ~——___ Bl
S T - -
(iii) 2 = 16x"2 lsgllvzquatmg with attempt to
2] |x*=8
x=2 , Al

2 (a) A polynomial f(x) has aremainder of —2 when divided by (2x + 1). Showing your
method clearly,

(i) find the remainder when f(x) — 1 is divided by (2x + 1), 2]
(i) find interms of f(x), a polynomial which is completely divisible by (2x + 1). 2]
Aa) (@) [Letf(x)= Qx+1)Q(x) -2
121 fxX)-1=2x+1))Q{x)-2-1 M1
' Remainder = —3 B1
@ fO)+2=Cx+1)NQ(x)—2+2 M1
[2] A polynomial = f(x) + 2, any multiple of f(x) +2 | Bl

e et et oo ANDATTINY Do NINANY



4

(b) A polynomiat g(x) can be expressed as g(x) = (x> —x — 2)P(x) + ax + b,

where P(x) is a polynomials in x. Given that g{(x) leaves a remainder of —7 when

divided by (x¥ — 2) and a remainder of —19 when divided by (x + 1)

(i) Find the value of gand of b. [5]
(ii) Find the remainder when' g(x) is divided by (x — 2)(x + 1). 1]
2000 g0 = GZ—x=2)P(x) + ax + b,
[5] =(x—-2)(x+ DPx)+ax+ b, (x—=2)(x+ 1) seenor
Substituting x = —1 or 2 (-1)? - (~1) — 2 seenor
g(2) = 2a+ b=~7 2?2 —~ 2 =2 seen Bl
20+ b= —7 o ) Bl
gD = —a+b= 19 ........(2) Bl
26) () | (1) — (@), 3a=12
a=4 Al
b= —15 Al
(b) (ii) | Remainder =4x — 15 Al
(1]
3 Do not use a calculator in this question.
@ @ Simplify (2~ v5)". )
(ii) Given that x = 2—_1;,—5 , find the exact valueof x?+ x —2 - 3]
3@® | (2- v5) =4-4V5+5
(1] =9-45 Al
* x2+x“2=9—14\/§+2—1\/’§— >
3] s s, Rationalising the
51780 i denominator M1
=5+3V5 Al

4047/02/Prelim 2/2016




5

(b) The volume of a cuboid with a square base is 19 + 11v3 cm®. The height of the cuboid is
v3 + 1 cm and the length of each side.of the square base is a + Vb , where

aand b are infegers. Find the values of a and of b. 6]
3(b) Area = 19+11V3 M1
S T N34
£6] _19+11¥3 % Vv3-1
i o341 T 3-1
_ 19V3+33-19-1143
2
14 +8V3 Bl
(a + \/E)Z = ———é—
a?+b+2avb=7+4J3
a?+b =T () Equating rational and irrational
2avb = 4V3 parts M1
avbh=2v3 . Do not accept avh = 2V3 .
Fo Ry — (2) a=2b=3 :

From (1), a®>=7—b

(7-b)b=12

0=bh-7b+12

M1 obtain a quadratic equation

(b—)(b—-3)=0

b=30or b=4

when b =4, a? = 7 — 4 = 3 (rejected)

Obtain either both &’s or
both a’s

whenb =3, a?2=7-3=4

—

a =2 or a=—2(rejected)

a=2and b=3

Al [given provided M1 has
been awarded]

4 (a)" The roots of the-quadratic equation 2x? +5x — 1 = 0 are tan 4 and tan B.

(i) Find the value of tan{4 + B). 3]
(i) Find the value of sec?(4 + B). [2]
4(a) (i 5
@ Q) tand + tanB = ~3
l Either one B1
o 1
tanA tanB = — 5 -J
. tanA+tanB
tan(A + B) - 1-tanAtan B
_ Bl
143
Al

i
!
Wl

~ 3 . P g P
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4 (a) (ii) sec?(A+ B) =1+ tan?(4 + B)
1 - 148 Ml
9
= 2 Al
9
R 2 2 _ 2
(b) (1) Show that iy T T T 4 sec*3x. 2]
. . = 2
(i) Hence evaluate [3? o T Trons [2]
4b) ) |LHS= — -
1-=sin3x 1-+4sin3x
{2] _ 2(1+ sin 3x)+2(1—sin 3x) B1
(1~ sin?3x) .
= Bl
cns23x
= 4 sec®3x (Shown)
(ii) }% 2,2
G 1-sin3x 1+#sip3x
[2] - (3 2
= [z 4 sec 7TBx dx
._ Bl
= [i tan Bx] 12
3 0
=2 Al
3
5 A curve has the equation y = 3x%e™*.
(i) Find an expression for % and obtain the coordinates of the stationary points
of the curve. {51
(i) Determine the nature of these stationary points. [6]

5@
[5]

d
ny = 6xe ™ + 3x%(~—e™¥)

Product rule M1, B1

= 3xe *(2 —-x)

. . d
For stationary points, &—Z- =0

Mi

3xe™*(2—x)=0

e *#0, x=00rx=2

Al[ 2 values of x]

0,0) and 2, 2)

Both points Al
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5(it) f_}_’_: G — 6xe~* + 6x(—e=) + 3x2(e~%) Award M1 if there is at
1 (6] dxz v most 1 wrong term
= pe ¥ — 12xe™* + 3x%(e™) Al
= 3e7*(2 — 4x + x?)
whenx= 0,22 = 6> 0 Bl
(0, 0) is-a minimum point Al
whenx=2,%%=~—e%<0 Bl
2, g—) is a maximum point Al
OR Using."—i%,
[6] | For (0, 0)
x 0" 0 o*
dy <0G{ 0 | >0
dx
Sketch of B2
tangent \ — /
(0, 0) is a minimum point Al
For (2, Z—z
x 2- 2 2*
ay >0 0 | <0
dx
Sketch of . B2
tangér;t-: / \
2, :1?-22-) is 2 maximum point Al

. Jrm ~ w




(a) Find in ascending powers of x, the first four terms in the expansionof (1 +x — x2)°. 4]

6(2) (1+x— x%)°

B =14 Q)a- 2 + Q) - 27+ (§) - 5P+ | B

=1+4+9x —9x? +36(x% — 2x3 + x*) + 84(x3 + --.)

= 14+9x +27 x> +12x3 + +--.) A3 deduct 1 mark

for every wrong

term
1 12
by (O Fmd the term mdependentof x in the expansion of (Zx - %) - - [3]
12
(ii) Determine the constant term in the expansion of (3 + 4x3) (sz - Z—IX-) X [4]
6(b) (1) th = (12 2y1z-r (_ 1Y Ml
{r + 1) term (r)(Zx ) r( 2x)
{3] For term independent of x
’CO — x2(12—r) X x™r
0=24—3r
r=28 Bl
- (12 2y12-8
Term independent of x = ( )(Zx )1 ( P
_ (12
- (Do ()
_ 12
-(DE
=:’2§ Al

16

6(b) (i) | Forx™3, —3=24—3r
4] r=9 Ml
Terminx ™3 = (12) (2x%)3 (

2x
- - ()G
= _%x‘3 Bl
Constant = 3 f_‘ZE +4x (- 2—23) Mi
v Al

16
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A curve is such that 2y 6
dx? (2x-5)%

The equation of the tangent to the curve at the point (3,—1)is y —2x + 7 = 0.

(i) Find an expression for % .

(i) Find the equation of the curve.

{4]
{5]

L 7() d_}’ _ f 6’(2x —5)2dx M1 attempt to integrate
dx
[4] _ 6(x-5)77 Bl
@ ¢
_ 3
T T TC
when x = 3, - 2
i dx
2=-3+¢ o
c=35 M1 attempt to find ¢
d 3 Al
2 +5
x (2x —5)
.o 3 )
(i) y = f _ +5 dx M1 attempt to find y by
(Zx et 5) . . dy
integrating —=.
(5] - .3‘_“(32’_‘:2 +5¢+d Bl
substitutingx =3 andy = -1 |
3
1= 'T;z".lnl +15+d M1 attempt to find d
d= -16 B1
3In(2x -5 Al
= —%—-———)- +5x—16

e . h e b e T

. e -
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The table shows experimental values of the variables x and y.

X

1 2

3

4 5

y

04 v 0.6

1.6

3.4 6

It is known that x and y are related by the equation of the form p(x +y) = pg + gx2.

(i) Plot x + y against x2, draw the straight line graph and use it to estimate the

value of p and g.

(6]

(iiy Using your values of p and g, find the values of x for which p(x* — 2q) = 2gx2. (2]

(i) x? 1 4 19 116 125
[6] x+y 14126 (4617411
p(x +y) = pq + gx*
x+y—q=%ﬁ
X+y=q+Ix% e (1) 7 Award B either for (1) or (2)
P
gradient = %, x +y-intercept =g ~----- ) _r
From graph, x + y-intercept =1
q= Al
gradient = Zi;i;—l =0.4
1 0.4
p
1
- =0.4
p
p=2.5 Al
On graph paper
Straight line drawn with correct labelling of axes Bl
All 5 points correctly plotted B2 deduct 1 mark for every
point plotted wrongly

8Gi) |5, , 2 M1
2 (x* -2) = 2x FT for their answers in (i)
1

ENESE
x4 =10

x= +v10 orx = % 3.16

Al
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12

dy-3x=0
'(35 1)

The circle with centre C(3, 1) touches the x-axis at 4. The line 4y — 3x = 0 touches

the circle at B.

Find the coordinates of B.

[5]

9(a) | Equation of tangent at Bis y = %x.

(5] Gradient of normal at B is —?; Ml
Equation of normalat Bisy —1 = — § (x—-3)
4
y=-—zx +5 Bl
For point of intersection B,
3 M1
ZX = —j_ x+5
25x _
12 )
12 B1 for correct x or y
X = —
5
_ 9
Y= 3
12 9
22 Al
B( 5 ’j)
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(b) The equation of another circleis (x —4)*+ (¥ + 1)* = 4.

13

The line y = mx is a tangent to the circle. Find the possible exact values of m.  [4]

9(b)

For points-of intersection,

(4]

substitute y = mx into (x —4)? + (y +1)* =4

(x—4)2+ (mx+1)2=4 M1
x2—8x+16+ m?*x*+2mx+1=4
21 +m)+xCm—-8)+13=0
Forlineto be a taﬁgem to the circle, Discriminant =0
2m-8)Y2—4(1+ m?)13 =0 Ml
4m? - 32m+64—-52—-52m* =0
0 = 48m* + 32m — 12
0=12m?+8m -3
_ =8 +./64 —4(12)(-3)
m= 2(12)
_ —8'+4V13
m= T2
X ) Al, Al
= = = 141
m= also accept m = 315 Vi3 Deduct 1 mark if answers

are not in the lowest

terms

~rt 4

Y . Yy M Y1 AN A IN™ITY 1 M I~NN2 7~
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. 2x3+x2 ex+d
10 (a) (i) Express 7—— intheformof ax+ b+ ——. [2]
. +d
(ii) Using the values of ¢ and d found in (1), express x?; 7, 52
sum of two partial fractions. {31
10(a) (i) By long division Mi
2] 2x3 + x? e 14 5x — 2 Al
—_—— = 2% — 1 - :
X2+ x—2 X24+x-2
(i) S5x -2 A N B
3] (x+2)x-1) x+2 x-1
Sx—2=A(x— 1 +B(x+2) M1
Letx=1, 3=3B
B=1 Al for either
Comparing coefficientofx, 4 + B=5 A or B correct
A=4
5x—2 4 4 1 Al
x24+x—-2 x4+2 x-1
‘ . x—-1
{b) A curve has the equation y = —
(i) Differentiate y with respect to x. [31
(ii) Using the result in-part b(i), determine | 2Cx43) gy, 2]
) (4x+1)2
(b) (i) N T | _1 M1 quotient rule
3] dy _ Ax+1)Z (1)-(x-1)x 5 (ax+1)"z2x4 M1 chain rule
dx (4x+1)
— (4x+1)"%[4x+1—2(x—1)]
(4x+1)
- 2x43 Al
(4x+1)§
(il) Zx+3 dx = xX=1 +e M1
(ax+1)2 Vax+1 Reverse differentiation)
2(2x+3 _ 2(x-1) | Al
dx = =—=+¢
(4x+1)% Vax+l
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°

The diagram shows two circles, C; and C, with centres 4 and B respectively. The two circles
touch each other at D. €, has radius 3 units and touches the y-axis at E. C, has radius 2 units and
touches the x-axis at F. The lines 4B produced meets the x-axis at G and

angle BGO = @ radians.

(i) Show with clear explanations, that OF = 5sinf6 + 2 and OF = 5cos8 + 3. 2]

(ii) Show that EF? = 38 + 20sin 8 + 30cos 6. [2]

(iii) Express EF?inthe form 38 4+ R cos(8 — @), where R > 0 and «a is an acute angle. [3]

(iv) Giventhat EF é_’ = 65, find the value of 9. (2]

() |AB=3+2=5cm

2] OE = ABsin@ + BF = 5sin8 + 2 Bl

OF = AB¢os 0 + AE = 5cos6 + 3 Bl

AQATION Mealims 301 L
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11(i)

EF? = (5sinf+2)*+ (5cos8 + 3)?

Mi

e

= 25sin*@ + 20sin8 + 4 + 25¢0s%0 + 30 cosd +9

Il

25(sin%8 + cos?8) + 20sinf + 30cos @ + 13

LB1

it

38 + 20 sin8 + 30 cos 8 (AG)

11(iir)

EF? =38 + Rcos (8 — )

[3]

R = 302+ 202 =10V13

Bl

20
a= tan"! (55) = (.58800

Bl

EF? = 38 + 10vV13cos (6 — 0.58800)

Al

H1(@v)

EF? = 65

(2]

65 =38 + 10vV13cos (6 — 0.58800)

27
10v13

= cos (8 — 0.58800)

Mi

6 — 0.58800 = 0.72448

6 = 1.31 (to 3 sig fig)

Al
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