Name()	Class:
-------	---	--------

SERANGOON SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2017

SECONDARY 4 EXPRESS/ 5 NORMAL ACADEMIC

SCIENCE (CHEMISTRY)

5078/01

Paper 1 Multiple Choice

28 August 2017

Additional Materials:

Multiple Choice Answer Sheet

1 hour

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

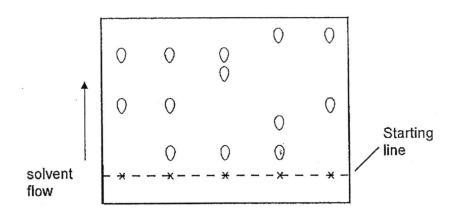
Do not use staples, paper clips, highlighters, glue or correction liquid. Write your name, class and index number on the Answer Sheet in the spaces provided unless this has been done for you.

There are **forty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate Answer sheet.

Read the instructions on the Answer Sheet very carefully.

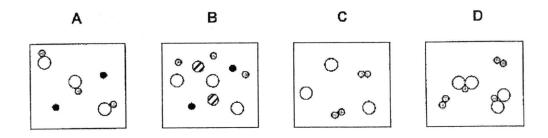
Each correct answer will score one mark. A mark will not be deducted for a wrong answer.


Any rough working should be done in this booklet.

A copy of the Periodic Table is printed on the last page.

		and the same of th
This document consists of	printed pages and	blank page.

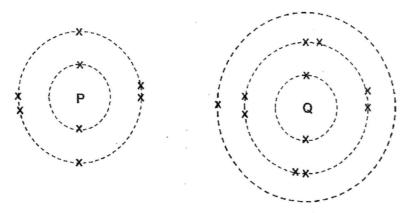
Turn over


1 The diagram shows a chromatogram which was prepared using spots of five different inks.

How many different dyes were used to make the five inks?

- **A** 5
- **B** 6
- **C** 7
- D 13

Which of the following is a mixture of two elements?



3 How many electrons are shared in the covalent bonds in an ethene molecule?

- A 5
- **B** 6
- C 10
- D 12

4 The electronic structures of two atoms P and Q are shown.

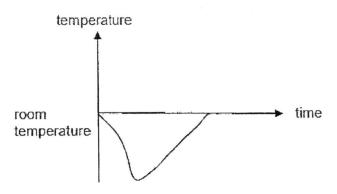
P and Q combine together to form a compound.

Which of the following describes the type of particles formed after bonding and the chemical formula of the compound?

	type of bonding	chemical formula
Α	ionic	Q ₂ P
В	ionic	QP ₂
С	covalent	P ₂ Q
D	covalent	PQ ₂

5 Why does molten sodium chloride conduct electricity?

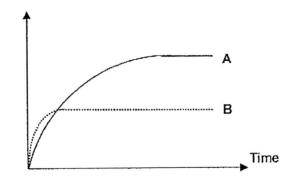
- A An electron is completely transferred from sodium to chlorine.
- B Sodium ions are strongly attracted to the chloride ions.
- C Electrons in the sodium chloride are free to move.
- D Sodium ions and chloride ions are free to move.


6 4.0 g of calcium is completely burnt in pure oxygen.

$$2 Ca + O_2 \rightarrow 2 CaO$$

Which volume of oxygen is used in this reaction at room temperature and pressure?

- A 0.05 dm³
- B 0.10 dm³
- C 1.20 dm³
- D 2.40 dm³


7 The following graph was obtained when potassium fluoride was dissolved in water.

Which of the following statements about the reaction is correct?

- A The change is endothermic.
- B The change is exothermic.
- C Ice is formed and has melted.
- D A redox reaction has taken place.
- In the graph, curve A represents the result of the reaction between 1.0 g of granulated zinc and an excess of acid at 30°C.

Volume of gas produced

Which change could produce curve B?

- A 1.0 g of powdered zinc at 20 °C
- B 1.0 g of granulated zinc at 20 °C
- C 0.5 g of granulated zinc at 40 °C
- D 0.5 g of granulated zinc at 20 °C

- 9 What is the ionic equation for the reaction between hydrochloric acid and sodium hydroxide?
 - A $H^+ + Cl^- \rightarrow HCl$
 - $B \quad H^+ + OH^- \rightarrow H_2O$
 - C $2H^+ + O^{2-} \rightarrow H_2O$
 - D Na⁺ + $Cl^- \rightarrow NaCl$
- 10 Distilled water contains dissolved carbon dioxide.

What is the pH value of this distilled water?

- A 11
- **B** 9
- **C** 7
- **D** 5
- 11 The table below shows the solubility in water of some copper compounds.

compound	solubility
copper(II) oxide	X
copper(II) hydroxide	X
copper(II) chloride	V
copper(II) carbonate	X

Which method is used to prepare copper(Π) chloride?

- A warming copper(II) oxide with dilute hydrochloric acid
- B titrating copper(II) hydroxide with dilute hydrochloric acid
- C adding copper to dilute hydrochloric acid at room temperature
- D precipitating the salt by adding copper(II) sulfate solution to dilute hydrochloric acid
- 12 Which statement about the trends in Group VII of the Periodic Table is correct?

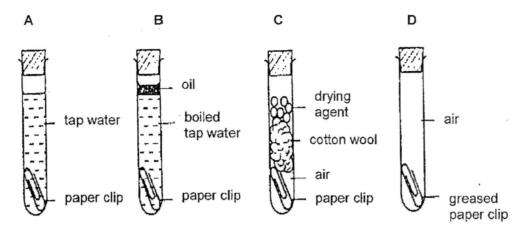
On descending Group VII, the elements have ______.

- A decreasing boiling point
- B increasing reactivity
- C lower density
- D darker colour

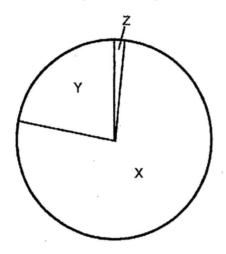
The diagram shows the structure of a covalent compound containing the element hydrogen, H, and the unknown elements X, Y and Z.

To which groups of the Periodic Table do these three elements, X, Y and Z, belong?

	Х	Υ	Z
Α	IV	II	III
В	IV	VI	V
C	V	II	VI
D	V	VI	IV


When iron(III) oxide reacts with carbon monoxide in the blast furnace, a gas is released.

What happen to the iron ions and what is the gas released?

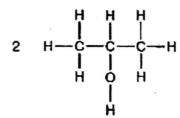

	The iron(III) ions are	The gas is
Α	Reduced	carbon dioxide
В	Reduced	oxygen
С	Oxidised	carbon dioxide
D	Oxidised	oxygen

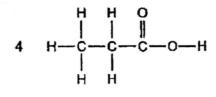
- 15 Which is **not** a reason for recycling metals such as aluminium?
 - A To conserve the ores of aluminium.
 - B To prevent aluminium from losing its metallic properties.
 - C Recycling aluminium is less costly than extracting aluminium.
 - D To reduce the amount of aluminium waste so as to reduce land pollution.

16 In which test tube is the paper-clip made of iron most likely to rust?

17 The pie-chart shows the composition of pure air.

Which of the following correctly identifies gases X, Y and Z?

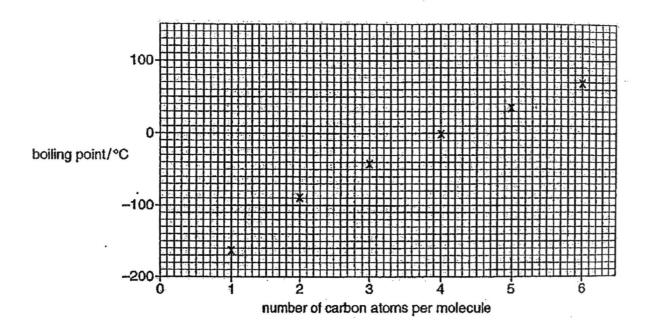

	gas X	gas Y	gas Z
Α	oxygen	nitrogen	carbon dioxide
В	nitrogen	carbon dioxide	oxygen
С	nitrogen	oxygen	argon
D	water vapour	oxygen	hydrogen


18 The diagram shows two stages in a reaction scheme.

What is the name of stage II?

- A Substitution
- B Fractional Distillation
- C Hydrogenation
- D Cracking
- 19 The structural formulae of some organic compounds are shown below.

3 H-O-C-C-C-O-H



Which compounds are alcohols?

- A 1 only
- B 4 only
- C 1 and 2 only
- D 1, 2 and 3

20 The graph shows how the boiling point of some hydrocarbon depends on the number of carbon atoms in their molecules.

Which hydrocarbon is an alkane with a boiling point close to 0 °C?

Data Sheet

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

17

DATA SHEET
The Periodic Table of the Elements

		Φ §	ω _Φ	u K	T		5			ton	1		- E			u c				
	0	Helium	Ne s	10 Ne					\prec	Krypton 36	13.	×	Xenon 54			Radon				Lu Lu
	₹		2 ∐	Fluorine 9	+		Chlorine 17	90	ğ	Bromine 35	-	_	- 53	210	At	Astaline 85				ξ
	5		δ O	æ	32	တ	Sulfur 16	7.9	Se	Selenium 34	128	e H	Tellunum 52	209	Ъо	Polanium 84				Tm
	>		2 Z	Nitrogen 7	31	۵	Phosphorus 15	75	As	Arsenic 33	122	Sb	Antimony 51	209	<u>.</u>	Bismuth 83				167 Fr
	2		≌.೦	Carbon .	28	S	Silicon 14	73	Ge	Germanium 32		Sn	55	207	РЬ	Lead 82				165 Ho
	≡		÷ω	Boron 5	27	₹	Aluminium 13	-			-		Indium 49			Thallium 81				162 Dy
								_		Zinc 30	-		Cadmium 48	_	무	Mercury 80				159 Tb
										Copper 29		Ag	Silver 47	197	Au	Gald 79				Gd
Group								29	Z	Nickel 28	106	Pd	Palladium 46	195	古	Platinum 78				Eu
Q							ř					格	Rhodium 45	192	느	Iridium 77				Sm
		Hydrogen								Iron 26		Ru	Ruthenium 44	190	SO	Osmium 76				Pm
								55	Mn	Manganese 25		ည	Technetium 43	188	Re	Rhenium 75				Nd.
									င်	_		Mo	Molybdenum 42			Tungsten 74				₹ ¶
								51		Vanadium 23	83		_	181	n B	Tantalum 73				ê Q (
								48	j=	Titanium 22	91	Zr	zirconium 40	178	士	Hafnium 72				
								45	လွ	Scandium 21	89	>	yttrium 39	139	g	Lanthanum 57	227	Ac	Actinium 89	d series
	=		Be	Beryllium 4	24	Mg	Magnesium 12	9 ,	ပ္မ	Calcium 20	88		Strontlum 38	137		Barium 58	226		_	*58-71 Lanthanoid series
	_		- 'I	3 3	23	Z S	30dium	38		Potassium 19	82	Rb	Rubidium 37	s133	ပိ	Caesium 55	223	į.	Francium 87	*58-71 [

				Ē
175 Lu		260	۲	Lawrencium 103
ξ ^τ Yb	Ytterbium 70	259	ŝ	Nobelium 102
T T	Thullum 89	258	Md	Mendelevium 101
т Б	Erblum 68			Fermium 100
<u>چ</u>	Holmium 67			Einsteinium 99
₽ 6	Dysprasium 86			Caffornium 98
d T	Terbium 65	247	æ	Berkelium 97
Gd b	Gadolinium 84	247	S	Curium 96
Eu				Americium 95
Sm	Samarium 62			Plutonium 94
Pm	Promethium 61	237	ď	Neptunium 93
Nd Pd	Neodymium 60	238	>	Uranium 92
₹ ₽	Praseodymium 59	231	Ба	Protactinium 91
⁵ O	Cerium 58	232	드	Thorium 90

A = relative atomic mass X = atomic symbol B = proton (atomic) number

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.)

Name	()	Class: Sec				
SEPUL OCCON SECONDATIVE SCHOOL	SERANGOON SECONDA	RY SCI	HOOL				
	PRELIMINARY EXAMINATION 2017						
ANE TO THE PROPERTY OF THE PRO	SECONDARY 4 EXPRESS	S/ 5 NO	RMAL (ACADEMIC)				
SCIENCE (CHE	MISTRY)		5076/03				
*	•		5078/03				
Paper 3			28 AUGUST 2017				
			1 hour 15 minutes				

READ THESE INSTRUCTIONS FIRST

Write your name and index number on the cover page.
Write in dark blue or black pen on both sides of the paper.
You may use a pencil for any diagrams or graphs or rough working.
Do not use highlighters, glue or correction fluid.

Section A

Answer all the questions in the spaces provided.

Section B

Answer any **two** questions.

Write your answers on the spaces provided.

The number of marks is given in brackets [] at the end of each question or part of question.

A copy of the Periodic Table is printed on page 14.

For Examiner's Use						
Section A						
Total						

This paper consists of 14 p	printed pages and t) blank page
-----------------------------	---------------------	--------------

Section A [45 marks] Answer all questions.

A1 The table below shows some setup that is used to separate mixtures. Fill in the blanks with appropriate word or phrases.

For (c), draw a labelled setup to separate sand from water.

(a) has been done for you.

	Method of separation	Setup	Purpose	
(a)	Sublimation	Mixture of iodine and sodium chloride	To obtain iodine	
(b)		seawater		[2]
(c)			To separate sand from water	[3]

2

A2 Table 2.1 shows a list of particles with their respective number of protons, neutrons and electrons.

Particle	Number of protons	Number of neutrons	Number of electrons
Р	1	0	1
Q	2	3	2
R	5	6	5
S	7	7	10
T	9	10	9

Table 2.1

Which particle(s) P, Q, R, S or T in table 2.1 fit each of the following descriptions?

(a)	An atom with mass number of 5?	[1]
(b)	An atom with one valence electron?	[1]
(c)	An ion of a non-metal?	[1]
(d)	An atom from Group 0?	[1]
e)(i)	Draw the dot-and-cross diagram of the compound formed between P and T.	[2]

(ii)	Describe in terms of bonding and structure whether the compound formed in (e)(i) would have a high or low boiling point.	[2]
А3	Lithium, sodium and potassium belongs to the same group in the Periodic Table.	
(a)	Which group are they placed in in the Periodic Table? Why are they placed in this group in the Periodic Table?	[2]
(p)	These metals could react with water to form a gas.	
(i)	Write a balanced chemical equation for the reaction between sodium and water.	[2]
(ii)	Determine the mass of sodium metal that is needed to react with water to produce 200 cm ³ of gas.	[2]
(iii)	What will be the observation made when a blue and red litmus paper is dipped into the products formed after the reaction?	[1]
(iv)	What is the ion present that caused this change observed in (b)(iii)?	[1]

A4 Figure 4.1 shows the setup where the beaker contains powder magnesium chloride and Figure 4.2 shows the setup where the beaker contains magnesium chloride solution.

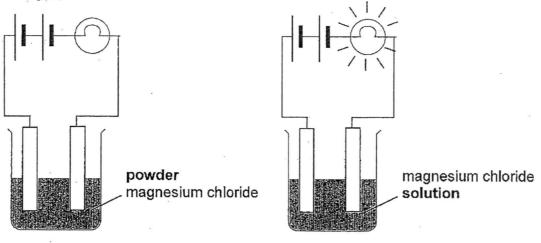


Figure 4.1

Figure 4.2

(a)	Explain why the light bulb in figure 4.1 did not light up whereas the light bulb in figure 4.2 is lighted up.	[3]
	······································	

(b) Draw the dot-and-cross diagram of magnesium chloride.

[2]

Figure 5.1 describes reactions involving white solid ${\bf P}.$ A5

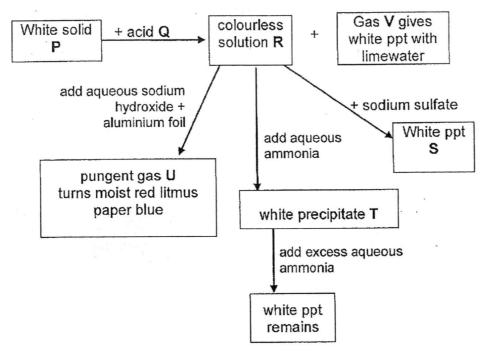
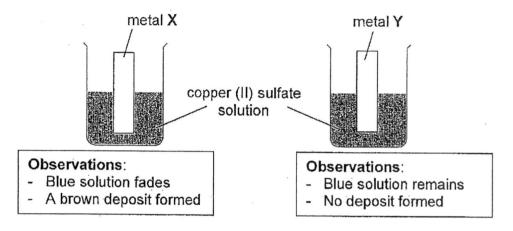



Figure 5.1

[7]

(a)	Identify the following substances:		[7]
(i)	White solid P		
(ii)	Acid Q		
(iii)	Colourless solution R		
(iv)	White precipitate S		
(v)	White precipitate T		
(vi)	Gas U		
(vii)	Gas V		
(b)	Describe the observations that would hydroxide is added dropwise to colourless	be made when aqueous sodium solution R till no further change.	[1]

A6 Figure 6.1 shows metal X and metal Y are dipped into beakers containing copper (II) sulfate solution and their respective observations made.

	Figure 6.1	
(a)(i)	Arrange the metal X, Y and copper in increasing order of their reactivity.	[1]
(ii)	Explain why a brown deposit is formed when $\operatorname{\textbf{metal}} \mathbf{X}$ is dipped into copper (II) sulfate solution.	[3]
(b)	Describe the observation that would be made when metal X and Y are placed in a beaker containing hydrochloric acid.	[2]

A7 Figure 7.1 shows some of reaction involving unsaturated hydrocarbon V.

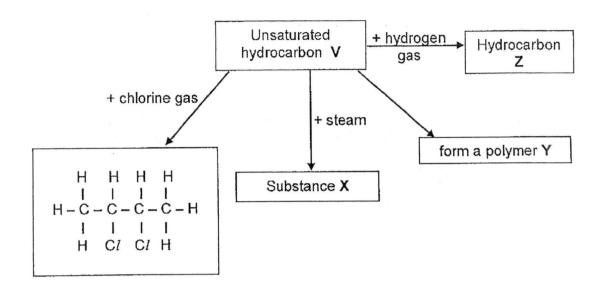


Figure 7.1

(a)	Draw the structural formula of substance X and the repeating unit of polymer Y.		[2]
	Substance X	repeating unit of polymer Y	
(b)	Describe an experiment to differentia		[3]
()			

arrie.	·() Class:	_
	Section B [20 marks]	
	Answer two questions from this section. Write your answers in the space provided.	
B8	Three beakers containing three different colourless solutions had their labels removed. The three solutions are said to be hydrochloric acid, sodium carbonate and sodium chloride.	
(a)	Given only litmus papers and the three beakers of colourless solutions, describe how the identity of solutions in each beaker can be identified.	[5]
	There are mainly three sources of fuel found on Earth. They are crude oil, coal and natural gas.	
(b)	Describe how crude oil is separated to obtain useful fractions.	[3]
		1-1
c)	When coal is burnt in power stations, sulfur dioxide gas is often produced.	
(i)	Describe a harmful effect of sulfur dioxide gas.	[1]
ii)	Describe how the emission of sulfur dioxide from power stations can be reduced.	[1]

B9 A student wants to investigate the effect of temperature on rate of reaction. Table 9.1 shows the list of experiments that he carried out with the reaction between excess lumps of copper (II) carbonate with 10 cm³ of 0.75 mol/dm³ of hydrochloric acid.

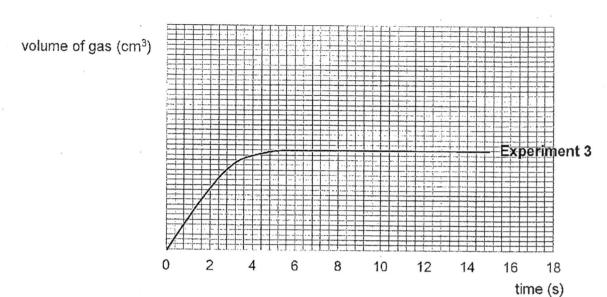

Experiment No.	Temperature (°C)	Time taken to collect the maximum volume of gas produced (min)
1	25	8
2	30	7
3	35	6
4	40	4.5
5	45	2

Table 9.1

(ii) Determine the maximum volume of gas that can be produced from this	(a)(i)	Write the balanced chemical equation between copper (II) carbonate and hydrochloric acid.	[2]
	. ,	reaction.	[3]

(b)	Explain in terms of collision of particles, how an increase in temperature from experiment 1 to 5 affects the time taken to collect the maximum volume of gas produced.	[3]

The graph below is obtained based on the data collected from experiment 3.

- (c) Sketch, on the axes above, the graph that would be obtained when
- [2] dm³ of
- (i) Powder of copper (II) carbonate is added to 10 cm³ of 0.75 mol/dm³ of hydrochloric acid at 35°C. Label the graph clearly with '(c)(i)'.
- (ii) 20 cm³ of 0.75 mol/dm³ of hydrochloric acid is used at 35°C. Label the graph clearly with '(c)(ii)'.

B10	Ethanol can be produced from sugar.	
(a)(i)	Describe the process to produce ethanol from sugar.	[3]
	*	
	······································	
	The temperature of the process used to produce ethanol from sugar is monitored. Figure 10.1 shows the temperature readings taken in the first three days of the process.	
	E 40 E 40 E 40 E 40 E 20 E 20 E 20	
	Day 1 Day 2 Day 3	
	Figure 10.1	
(ii)	State and explain whether the process to produce ethanol from sugar is an exothermic or endothermic reaction.	[2]
300		
(iii)	Explain whether the temperature recorded will ever reach 50°C.	[1]

(a)	turned sour.	
(i)	Explain with appropriate equation why the ethanol turned sour when exposed to air.	[2]
		8
4		
(ii)	Suggest a chemical that can used in the laboratory to achieve the same effect observed in (b)(i). Describe the observation that will be made when this chemical is added to ethanol.	[2]

END OF PAPER

The Periodic Table of the Elements

	0	4	Ť	helium	2	20	Se	neon	2	04.	Αľ	argon 18	84	2	Z	krypton 36	101	2 >	Xe	xenon	5	1 (Y.	radon	86				
	II/	1 12				19	u.	fluorine	27.0			chlorine 17	1			bromine 35	407	171		iodine	22	1	¥	astatine	85	1)			
	>					16	0	oxygen		32	ഗ	sulfur 16	79	2 (O.O.	selenium 34	007	97 L	0	telfurium E3	25	۱ ر	2	polonium	84				
	>					4	z	nitrogen	,	3.1	۵.	phasphorus	75	2 .	As	arsenic	00,	777	Sp	antimony	31	203	ã	bismuth	83				
	2					12	O	carbon	0	28	S	silicon 1.4	73	2 1	9	germanium 32	40	118	Sn	돌	nc	207	d d	lead	82				
	=					77	Ω	poron	0	27	Αl	aluminium	200	2 (g O	gallium 3.1		115	H	mnipui	48	204	<u>2</u>	thallium	81		8		
					,								25	3	Zu	zinc	3	112	B	cadmium	48	201	Β̈́Ξ	mercuny	80				
																copper	7				41	197	Au	gold	79				
dn																nickel						195	盂	platinum	78				
Group													2	ñ	ဝိ	cobalt	15	103			- 1	192	Ţ	iridium	77				
		-	- ፲	hydrogen									r.	00	Đ.	iron	07	101	Ru	ruthenlum	44	190	SO	osmium	92				
						•								8	Mn	manganes	52	ı	Tc	technetlum	43	186	E O	rhenium	75				
						mass	100	<u> </u>					-		ပ်	E	74		Mo	Ę	42	184		tungstan	74				
					Key	relative atomic mass	atomic symbol	пате	mber					2	>	vanadium	23	93	dN dN	opinm	41	181	E C	tantalum	73				-
		-				relativ	ato		atomic number					848	F	# (7.7		7.	zirconlum	40	178	Ĭ	2					
														45	S.	ım scandium	21	89	>	yttrium	39	139	σ	* withanism	57	1	Ac	actinium †	
	=					ō	, a	e	4	24	Mc	magnesium	12	40	ű	n calclum	20	88	ŭ.	strontium	38	137	ď			1	Ra	radium 88	
	-	-			÷	7	. :	Ithlum	3	23	Z	mnlpo	\exists	33		asslur	19	85	ŭ	rubidum	37	133	Č	2	55	1	Ĺ	frencium 87	

_		_	_	_	_	_	_	_	_	_	_	_	-		_	_	7			
175	2	:	ב	listation.	Intellatin	7.4			1	-	_	i	lawrenchim	land of the	403	300	-			
720	2	777	2		yrrerpium	10	2													
000	50	ŀ	E		malian	00	60		ı		Š	3	minglopasion	II KELIOGIEVIDI II	*0*	-				
107	10/	l	1		erbium	00	99		ł	1	2	=	Committee	I CILIDINI	200	001				
100	165		CI		holmlum		,		1		ŭ	3	- landalalana	ensteinium	00	7.7.				
000	162	1	2	1	dvsprosium		99		1		ť	5	111	Californium		25	2			
	159	i	2	1	terbium		35		1		ă	Š		perkellum		2		-		
	157		כי)	madollulum	B	94		1		3	5		Childm		90	20			
	152		ū	3	militaria	or or other	33		,		~	1		amencium		מט	00			
	150		3	5	maning	odinalinii.	32	-	1		ć	1		minutale		_	†			
	1		2	=	mounting	ויפוויחווי	6.1	-	1	1	- 17	Ċ	_	nantiniim	- Children	000	20			
	144	-	7	2	mood minne	mental man	90	200)	Milimoni	TI WILLIAM			ı	2	
The second second	141		ċ	ī	Dragodymi Im	Lasaduyiiidii	20	-		I	(ממ	1	- Insolatinii im	טוסומיייים איזייים	7	0			
	440	2						20	000	707	ì	2		thori:		0	36	1		
	1	· · · · · · · · · · · · · · · · · · ·	-	1 , 17	anthanoid		Series			400 707	200		Cic mit o	ACILION			Saras			

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

Name	_ (.)	Class: Sec	

SERANGOON SECONDARY SCHOOL

PRELIMINARY EXAMINATION 2017

SECONDARY 4 EXPRESS/ 5 NORMAL (ACADEMIC)

SCIENCE (CHEMISTRY)

5076/03

5078/03

Paper 3

28 AUGUST 2017

1 hour 15 minutes

READ THESE INSTRUCTIONS FIRST

Write your name and index number on the cover page.
Write in dark blue or black pen on both sides of the paper.
You may use a pencil for any diagrams or graphs or rough working.
Do not use highlighters, glue or correction fluid.

Section A

Answer all the questions in the spaces provided.

Section B

Answer any **two** questions.
Write your answers on the spaces provided.

The number of marks is given in brackets [] at the end of each question or part of question.

A copy of the Periodic Table is printed on page 14.

For Examiner's Use							
Section A							
Total							

This	paper	consists	of 14	printed	pages	and	0 k	olank	page
	•	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1			4200	uitu		/ICAT IIX	page

Turn over

Section A [45 marks] Answer all questions.

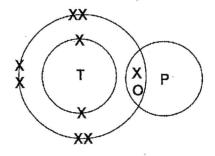
A1 The table below shows some setup that is used to separate mixtures. Fill in the blanks with appropriate word or phrases.

For (c), draw a labelled setup to separate sand from water.

(a) has been done for you.

	Method of separation	Setup	Purpose	
(a)	Sublimation	Mixture of iodine and sodium chloride	To obtain iodine	
(b)	Simple distillation	seawater	To obtain water	[2]
(c)	Filtration	Residue/sand Diagram [1] Labels [1] Filtrate/water	To separate sand from water	[3]

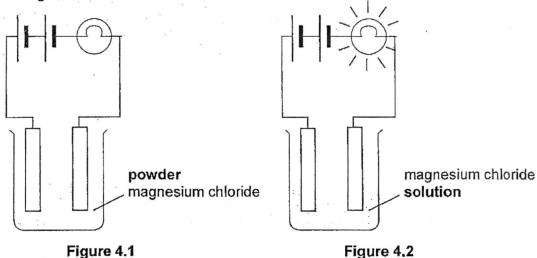
2


Table 2.1 shows a list of particles with their respective number of protons, neutrons and electrons.

Particle	Number of protons	Number of neutrons	Number of electrons
Р	1	0	1
Q	2	3	. 2
R	5	6	5
S	7	7	10
Т	9	10	9

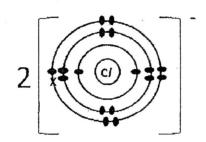
Table 2.1

Which particle(s) P, Q, R, S or T in table 2.1 fit each of the following descriptions?


(a)	An atom with mass number of 5?	[1]
(b)	An atom with one valence electron?	[1]
	P	
(c)	An ion of a non-metal?	[1]
	S	
(d)	An atom from Group 0?	[1]
	Q	
(e)(i)	Draw the dot-and-cross diagram of the compound formed between P and T.	[2]

[1]: correct ratio of P to T [1]: sharing of 1 pair of electrons

(11)	(e)(i) would have a high or low boiling point.	[2]
	Has a simple molecular structure with weak attraction forces between the	
	molecules [1]	
	As a result low amount of energy is needed to break these forces leading	
	to a low boiling point. [1]	
A3	Lithium, sodium and potassium belongs to the same group in the Periodic Table.	
(a)	Which group are they placed in in the Periodic Table? Why are they placed in this group in the Periodic Table?	[2]
	Group 1 [1]	
	They have one valence electrons. [1]	
(b)	These metals could react with water to form a gas.	
(i)	Write a balanced chemical equation for the reaction between sodium and water.	[2]
	2Na + 2H₂O → H₂ + 2NaOH	
(ii)	Determine the mass of sodium metal that is needed to react with water to produce 200 cm ³ of gas.	[2]
	No. of moles of $H_2 = 200/1000 \div 24 = 0.008333$ mols	
	No. of moles of Na = $0.008333 \times 2 = 0.016666 \text{ mols}$	×
	Mass of Na = 0.016666 x 23 = 0.383318	
	= 0.383 g (3 s.f.)	
(iii)	What will be the observation made when a blue and red litmus paper is dipped into the products formed after the reaction?	[1]
	The litmus paper will turn from red to blue	
(iv)	What is the ion present that caused this change observed in (b)(iii)? OH	[1]


A4 Figure 4.1 shows the setup where the beaker contains powder magnesium chloride and Figure 4.2 shows the setup where the beaker contains magnesium chloride solution.

(a) Explain why the light bulb in figure 4.1 did not light up whereas the light bulb in [3] figure 4.2 is lighted up.

Powder magnesium chloride does not have free moving ions [1]
To carry electrical charges and hence light bulb did not light up. [1]
However in magnesium chloride solution, there are free moving ions [1]

(b) Draw the dot-and-cross diagram of magnesium chloride.

[2]

Mg 2+

Symbol

X: electron of Mg

: electron of CI

[1]: correct drawing for magnesium ion

[1]: correct drawing for the chloride ion

A5 Figure 5.1 describes reactions involving white solid P.

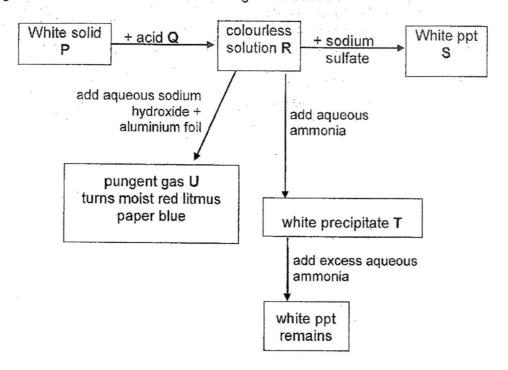


Figure 5.1

(a)	Identify the following substances:		[6]
(i)	White solid P	Lead (II) oxide	
(ii)	Acid Q	Nitric acid	
(iii)	Colourless solution R	Lead (II) nitrate	
(iv)	White precipitate S	Lead (II) sulfate	
(v)	White precipitate T	Lead (II) hydroxide	
(vi)	Gas U	Ammonia gas	

(b) Describe the observations that would be made when aqueous sodium [2] hydroxide is added dropwise to colourless solution R till no further change.

A white ppt is formed [1]

Soluble in excess sodium hydroxide to form a colourless solution [1]

A6 Figure 6.1 shows metal X and metal Y are dipped into beakers containing copper (II) sulfate solution and their respective observations made.

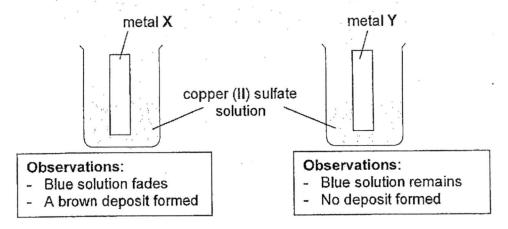


Figure 6.1

- (a)(i) Arrange the metal X, Y and copper in increasing order of their reactivity. [1]
- (ii) Explain why a brown deposit is formed when metal X is dipped into copper (II) [3] sulfate solution.

Metal X is more reactive than copper metal. [1]

Hence it is able to displace copper from copper (II) sulfate [1]

To form copper metal which is the brown deposit. [1]

(b) Describe the observation that would be made when metal X and Y are placed [2] in a beaker containing hydrochloric acid.

With metal X, there will be bubbles formed. [1] With metal Y, there will be no visible change. [1]

A7 Figure 7.1 shows some of reaction involving unsaturated hydrocarbon V.

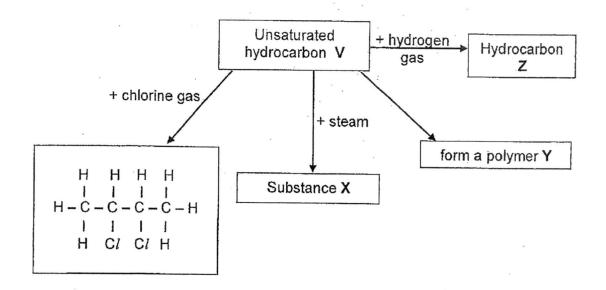
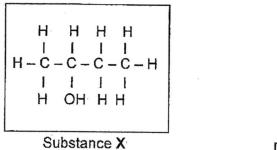



Figure 7.1

(a) Draw the structural formula of substance X and the repeating unit of polymer [2] Y.

(b) Describe an experiment to differentiate V from Z.

[3]

Add aqueous bromine [1]
With V, brown bromine decolourises [1]

With Z, there will be no visible change. [1]

Name:		. ()			Class: _	 	
					ě			
•				 	٠.			

Section B [20 marks]

Answer **two** questions from this section. Write your answers in the space provided.

- B8 Three beakers containing three different colourless solutions had their labels removed. The three solutions are said to be hydrochloric acid, sodium carbonate and sodium chloride.
- (a)(i) Given only litmus papers and the three beakers of colourless solutions, [5] describe how the identity of solutions in each beaker can be identified.

Dip litmus paper into the three solutions. [1]

The solution that turns blue litmus paper red contains hydrochloric acid
[1]

Add the hydrochloric acid identified into the other two beakers [1]

The beaker that shows bubbles forming contains sodium carbonate solution [1]

The beaker with no visible change is sodium chloride solution. [1]

There are mainly three sources of fuel found on Earth. They are crude oil, coal and natural gas.

[3]

(b) Describe how crude oil is separated to obtain useful fractions.

The crude oil is first heated and the vapour formed is passed into the fractionating column. [1]
The fractions with smaller hydrocarbons has a lower boiling point is cooled and collected at the top of the column. [1]
The fractions with larger hydrocarbons has a higher boiling point is cooled and collected at the bottom of the column. [1]

- (c) When coal is burnt in power stations, sulfur dioxide gas is often produced.
- (i) Describe a harmful effect of sulfur dioxide gas. [1]

 Breathing difficulties/ forms acid rain that damages buildings or kills aquatic lives.
- (ii) Describe how the emission of sulfur dioxide from power stations can be [1] reduced.

 Pass the sulfur dioxide gas through calcium carbonate. It will form solid calcium sulfite and removed.

B9 A student wants to investigate the effect of temperature on rate of reaction. Table 9.1 shows the list of experiments that he carried out with the reaction between excess lumps of copper (II) carbonate with 10 cm³ of 0.75 mol/dm³ of hydrochloric acid.

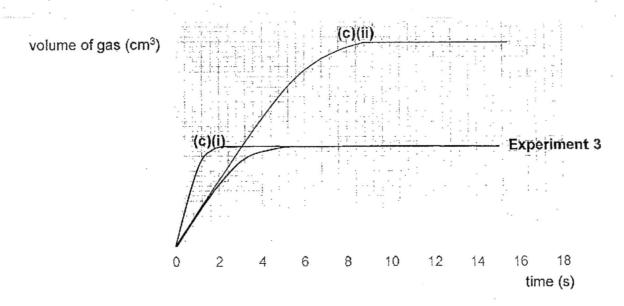
Experiment No.	Temperature (°C)	Time taken to collect the maximum volume of gas produced (min)
1	25	8
2	30	7
3	35	6
4	40	4.5
5	45	2

Table 9.1

(a)(i) Write the balanced chemical equation between copper (II) carbonate and [2] hydrochloric acid.

(ii) Determine the maximum volume of gas that can be produced from this [3] reaction.

No. of moles of HCl =
$$10/1000 \times 0.75 = 0.0075$$
 mols [1]
No. of moles of CO₂ = $0.0075/2 = 0.00375$ mols [1]
Vol. of CO₂ = $0.00375 \times 24 = 0.09$ dm³ [1]


(b) Explain in terms of collision of particles, how an increase in temperature from [3] experiment 1 to 5 affects the time taken to collect the maximum volume of gas produced.

An increase in temperature leads to an increase in kinetic energy of the reacting particles. [1]

This lead to an increase in frequency of effective collision between the reacting particles. [1]

As a result, the rate of reaction increases and the time taken decreases. [1]

The graph below is obtained based on the data collected from experiment 3.

- (c) Sketch, on the axes above, the graph that would be obtained when
- (i) Powder of copper (II) carbonate is added to 10 cm³ of 0.75 mol/dm³ of hydrochloric acid at 35°C. Label the graph clearly with '(c)(i)'.

[2]

(ii) 20 cm³ of 0.75 mol/dm³ of hydrochloric acid is used at 35°C. Label the graph clearly with '(c)(ii)'.

B10 Ethanol can be produced from sugar.

(a)(i) Describe the process to produce ethanol from sugar.

[3]

Sugar and yeast are added into a container to carry out fermentation. [1] The process is carried out 37 °C in the absence of air. [1]

The ethanol formed is then separated from the mixture using fractional distillation. [1]

The temperature of the process used to produce ethanol from sugar is monitored. Figure 10.1 shows the temperature readings taken in the first three days of the process.

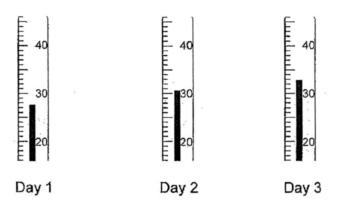


Figure 10.1

(ii) State and explain whether the process to produce ethanol from sugar is an [2] exothermic or endothermic reaction.

Exothermic reaction [1]

The temperature increases during the fermentation process. [1]

(iii) Explain whether the temperature recorded will ever reach 50°C. [1]

No. This is because the yeast would be denatured at temperature above 40°C and the fermentation process would have stopped.

- (b) When the ethanol produced in (a) is exposed to air, the taste of the ethanol turned sour.
- (i) Explain with appropriate equation why the ethanol turned sour when exposed [2] to air.

The ethanol produced would be oxidised by the oxygen in the air. [1] $CH_3CH_2OH + O_2 \rightarrow CH_3COOH$ [1]

(ii) Suggest a chemical that can used in the laboratory to achieve the same effect [2] observed in (b)(i). Describe the observation that will be made when this chemical is added to ethanol.

Acidified KMnO₄ [1]

It will turn from purple to colourless [1]

END OF PAPER