

Candidates answer on the Question Paper.

READ THESE INSTRUCTIONS FIRST

Write your class, index number and name on all the work you hand in.

Write in dark blue or black pen on both sides of the paper.

You may use an HB pencil for any diagrams or graphs.

Do not use staples, paper clips, glue or correction fluid.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal

place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total of the marks for this paper is 80.

Mathematical Formulae

Compound Interest

Total amount = $P(1 + \frac{r}{100})^n$

Mensuration

Curved surface area of a cone = πrl Surface area of a sphere = $4\pi r^2$ Volume of a cone = $\frac{1}{3}\pi r^2 h$ Volume of a sphere = $\frac{4}{3}\pi r^3$ Area of triangle $ABC = \frac{1}{2}ab\sin C$

Arc length = $r\theta$, where θ is in radians

Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^2 = b^2 + c^2 - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard Deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 (a) Factorise $6f^2 - 11f + 3$.

(b) Hence solve $6f^2 + 3 = 11f$.

Answer f =[1]

2 $$10\,000$ was invested in an account which pays r% per annum compound interest. At the end of 3 years, the interest earned was \$1910.16. Find the value of r.

3

3 Adam has written down seven numbers.

The mean of these numbers is 8, the median is 7 and the mode is 11. The smallest number is an even prime number and the largest number is eight times the smallest number.

The second and third numbers are consecutive numbers.

Find the seven numbers.

Answer,,,,, [2]

4 China has an estimated land area of 9.39×10^6 square kilometres. In 2017, the country had an estimated population of 1.4 billion. Find, giving your answer to a reasonable degree of accuracy, the average number of people per square kilometre of the country in 2017.

5 The area of a triangle XYZ is 166 cm². XY = 20.7 cm and YZ = 40.5 cm.

Find the two possible sizes of angle *XYZ*.

6 A solid cuboid has a length of 10 centimetres and a width of 4 centimetres. Its height, when correct to the nearest centimetre, is 7 centimetres.

(a) Given that 1 cubic centimetre of the material used to make the cuboid has a mass of 0.65 grams, find the maximum possible mass of the cuboid.

Answer grams [1]

(b) Cubes of side 3 centimetres are to be cut from the cuboid. Find the largest possible number of cubes which can be obtained.

7 (a) Simplify
$$a(5b-a)-(b-a)^2$$
.

(b) Factorise $6d^2 + 30de - 10e - 2d$ completely.

8 The solution of the inequality $-6\frac{1}{4} < \frac{x-4}{4} - 2x \le c$, where *c* is a constant, is represented on the number line below.

Find *c*.

Answer $c = \dots [2]$

7

Answer % [2]

10 Express $\frac{3}{2-3x} - \frac{24x}{9x^2-4} + \frac{4}{3x+2}$ as a single fraction in its simplest form.

11 Expressed as the products of their prime factors,

$$196 = 2^2 \times 7^2,$$

$$252 = 2^2 \times 3^2 \times 7$$

(a) Write down the highest common factor of 196 and 252.

(b) The lowest common multiple of 252 and an even number is 756.

(i) Express 756 as the product of its prime factors.

(ii) Find the smallest possible value of the even number.

12 The diagram shows part of a regular polygon PQRS Reflex angle $QRS = 198^{\circ}$.

(a) Find angle QPS.

Answer° [1]

(b) Find the sum of interior angles of the polygon.

Answer° [2]

- 13 The map of a national park is drawn to a scale of 1 : n. A lake, which has an actual area of 7.5 km², is represented by an area of 4.8 cm² on the map.
 - (a) Find the value of *n*.

(b) Calculate the actual perimeter of the lake, in km, if its perimeter on the map is 9 cm.

Answer km [1]

14 (a) Simplify
$$\frac{a^7b}{2} \times (a^3b)^{-2}$$
.

(b) Solve
$$\frac{2 \times 3^x}{\sqrt{3}} = 162$$
.

15 (a) 12 men can complete a project in 27 days. Assuming that all the men work at the same rate, find the additional number of men needed to complete the project in 6 days.

(b) P is proportional to the square root of Q. Find the percentage increase in P if Q is increased by 300%.

Answer % [2]

11

16 (a) Sketch the graph of $y = 3^x$ in the space below.

(b) The diagram shows the graph of y = (x + p)(2 - x), where p is a constant. The graph cuts the x-axis at A and B and the y-axis at C(0, 10).

(i) Write down the value of *p*.

(ii) Write down the equation of the line of symmetry of the graph.

(iii) Find the maximum value of
$$y = (x+p)(2-x)$$
.

17 The diagram shows the speed-time graph for the first 9 seconds of an object's journey.

(a) Find the speed when t = 2.5.

Answer m/s [1]

(b) Sketch the distance-time graph for the first 9 seconds of the object's journey in the space below.

After the first 9 seconds, the object decelerated uniformly until it came to rest at t = 17.

(c) Calculate the deceleration.

Answer m/s² [1]

The area of triangle *LMN* is 24 square units.

(a) Show that k = 1.

[1]

(b) Find, in its simplest form, the value of $\cos L\hat{M}N$.

(c) Find the equation of the line passing through *M* and parallel to *LN*.

(d) Write down the *x*-coordinate of the point *P* such that *LPMN* is a parallelogram.

19 S, T, U, V and W are points on a circle. SV is the diameter and it intersects TW at X. Angle $VTW = 48^{\circ}$ and angle $TUV = 127^{\circ}$.

- (a) Find, stating your reasons clearly,
 - (i) angle *VSW*,

Answer^o [1]

(ii) angle *TVS*,

Answer^o [2]

(iii) angle *WXV*.

Answer^o [1]

(b) Is *X* the centre of the circle? Explain your answer, stating your reasons clearly. *Answer*

......[1]

20 The diagram shows a scale drawing of a park *ABCD*. D is due West of C.

Scale: 1 cm to 10 m

(a)	Write down the bearing of <i>B</i> from <i>C</i> .
	<i>Answer</i> ° [1]
(b)	Construct the bisector of angle <i>DAB</i> . [1]
(c)	Two benches are to be placed in the park such that they are equidistant from AB and AD and 50 metres from the point D . Write down the actual distance between the two benches.
	<i>Answer</i> m [1]
(d)	Construct the perpendicular bisector of <i>CD</i> . [1]
(e)	A lamp post, P , is to be erected in the park, nearer to C than to D and nearer to AD than to AB . Mark and label a possible position of P . [1]

- 21 Two bags contain coloured marbles.
 Bag X contains 3 yellow marbles and 4 green marbles.
 Bag Y contains 5 yellow marbles and 6 green marbles.
 A marble is drawn at random from Bag X and put into Bag Y.
 A marble is then drawn at random from Bag Y.
 - (a) Complete the tree diagram to show this information.

(b) Find, in its simplest form, the probability that the two marbles drawn are of different colours.

If the marble drawn from Bag Y has the same colour as the marble drawn from Bag X, it is set aside and another marble is drawn at random from Bag Y.

(c) Find, in its simplest form, the probability that all the three marbles drawn have the same colour.

22 *P* and *Q* are points on a circle, centre *O*. *RQ* is a tangent to the circle at *Q*. PR = 4 cm and RQ = 16 cm.

(a) Show that the radius of the circle is 30 cm.

Answer

[2]

(b) Find angle *ROQ* in radians.

Answer radians [2]

(c) Find the perimeter of the shaded region.

Answer cm [2]

(d) Calculate the area of the shaded region.

Answer cm² [2]

23 A unit fraction is a fraction with 1 as its numerator.

(a) The first four terms of a sequence of unit fractions are

$$\frac{1}{37}$$
, $\frac{1}{31}$, $\frac{1}{25}$, $\frac{1}{19}$, ...

(i) Write down the first negative term in the sequence.

(ii) Find the *n*th term of the sequence.

(b) A unit fraction can be expressed as the sum of two or more unit fractions.

For example, $\frac{1}{24} = \frac{1}{88} + \frac{1}{33}$.

The following method is used to find the two unit fractions that add up to $\frac{1}{24}$.

$$\frac{1}{24} = \frac{1}{3 \times 8}$$
$$= \frac{11}{3 \times 8 \times 11}$$
$$= \frac{3+8}{3 \times 8 \times 11}$$
$$= \frac{3}{3 \times 8 \times 11} + \frac{8}{3 \times 8 \times 11}$$
$$= \frac{1}{88} + \frac{1}{33}$$

19

Answer

(ii) Using a similar method, express $\frac{1}{24}$ as a sum of **three** different unit fractions.

Answer

[BLANK PAGE]

Marking Scheme

Qn	Solution
1(a)	(2f-3)(3f-1)
(b)	$f = 1\frac{1}{2}$ or $\frac{1}{3}$
2	$10000 + 1910.16 = 10000 \left(1 + \frac{r}{100}\right)^3$ $r = 6$
3	2, 4, 5, 7, 11, 11, 16
4	Average number per km ² = $\frac{1.4 \times 10^9}{9.39 \times 10^6}$ = 150 (2sf)
5	23.3° or 156.7° Alternatively, 0.407 rad or 2.73 rad
6(a)	Max mass = 195 grams
(b)	6 cubes
7(a)	$7ab - 2a^2 - b^2$
(b)	$6d^{2} + 30de - 10e - 2d$ = 2[3d(d + 5e) - (d + 5e)] = 2(3d - 1)(d + 5e)
8	$\frac{x-4}{4} - 2x \le c$ $x \ge \frac{-4c-4}{7}$ $\frac{-4c-4}{7} = -2$ $c = 2\frac{1}{2}$
9	Selling price in $\$ = \frac{55499}{8187} \times 100$ = 677.89 Percentage = $\frac{700 - 677.89}{677.89} \times 100$ = 3.26% Or, Cost price in $¥ = 7 \times 8187$ = 57309 Percentage = $\frac{57309 - 55499}{55499} \times 100$ = 3.26%

	3 24x 4
	$\frac{1}{2-3x} - \frac{1}{9x^2-4} + \frac{1}{3x+2}$
	-3(3r+2)-24r+4(3r-2)
	$=\frac{-3(3x+2)(2x+1(3x-2))}{(3x+2)(3x-2)}$
10	-21r - 14
	$=\frac{21x}{(3x+2)(3x-2)}$
	(3x + 2)(3x - 2)
	$=\frac{7}{2}$ or $-\frac{7}{2}$
11()	$\frac{2-5x}{5x-2}$
11(a)	28
(b)(i)	$2^2 \times 3^3 \times 7$
(ii)	54
12(a)	18°
(b)	No. of sides = 20
	Sum of interior angles = 3240°
12(a)	$1 \text{ cm} - \frac{1}{25} \text{ km}$
15(a)	V 16
(b)	$n = 125\ 000$
(0)	
14(a)	$\frac{a}{2b}$
	2×3^x
	$\frac{1}{\sqrt{3}} = 162$
	$3^{x-\frac{1}{2}} - 3^{4}$
(b)	1
	$x - \frac{1}{2} = 4$
	$x = 4\frac{1}{2}$
15(a)	42 men
	$P = P \left(\sqrt{AQ} \right)$
(b)	$P_{new} = \frac{1}{\sqrt{Q}} (\sqrt{4Q})$
(-)	Percentage increase = 100%
	2
	$y \uparrow$
16(a)	
	O
(b)(i)	<i>p</i> = 5
(ii)	x = -1.5

(iii)	Maximum value = 12.25
17(a)	28.75 m/s
(b)	, 100 , 300
(c)	5 m/s^2
18(a)	$\frac{1}{2}(5-k)(12) = 24$ k = 1
(b)	$\cos \angle LMN = -\frac{5}{13}$
(c)	Gradient = $-\frac{3}{4}$ At $M(-2, 1)$, $1 = -\frac{3}{4}(-2) + c$ $y = -\frac{3}{4}x - \frac{1}{2}$
(d)	x = -14
19(a)(i)	Angle $VSW = 48^{\circ}$ (angles in same segment)
(ii)	Angle $STV = 90^{\circ}$ (right angle in semicircle) Angle $TSV = 53^{\circ}$ (angles in opposite segments) Angle $TVS = 37^{\circ}$
(iii)	Angle $WXV = 85^{\circ}$ (vertically opposite angles)
(b)	Since angle $VXW \neq$ twice of angle VTW , X is not the centre (angle at centre = 2 angle at circumference) Or, Angle $TSW = 53^{\circ} + 48^{\circ} \neq 90^{\circ}$ TW is not the diameter (right angle in semicircle) Therefore, X is not the centre.
20(a)	340°
(b)	Bisector of angle DAB
(c)	38 m
(d)	Perpendicular bisector of CD
(e)	Correct possible position of P

	$\frac{1}{2}$ and $\frac{1}{2}$							
21(a)	$\frac{5}{12}$ and $\frac{7}{12}$							
(b)	$P(\text{different}) = \frac{3}{7} \left(\frac{1}{2}\right) + \frac{4}{7} \left(\frac{5}{12}\right)$							
	$=\frac{19}{42}$							
(c)	$P(same) = \frac{3}{7} \left(\frac{1}{2}\right) \left(\frac{5}{11}\right) + \frac{4}{7} \left(\frac{7}{12}\right) \left(\frac{6}{11}\right)$							
	$=\frac{43}{154}$							
	Let r cm be the radius. $(r+4)^2 - r^2 + 16^2$							
22(a)	$r^{2} + 8r + 16 = r^{2} + 256$ r = 30							
	$\tan \angle ROO = \frac{16}{16}$							
(b)	$\angle ROQ = 0.48995$							
	= 0.490 rad (3sf) Arc length $PQ = 30(0.48995)$							
(c)	Perimeter = $30(0.48995) + 16 + 4$ = $34.7 \text{ cm} (3 \text{ sf})$							
	Area of sector $OPQ = \frac{1}{2} (30^2) (0.48995)$							
(d)	Shaded area = $\frac{1}{(30)(16)} - \frac{1}{(30^2)(0.48995)}$							
	$= 19.5 \text{ cm}^2 (3\text{sf})$							
23(a)(i)	$-\frac{1}{5}$							
(ii)	$\frac{1}{43-6n}$							
	$\frac{1}{24} = \frac{1}{2 \times 12}$							
	14							
	$=\frac{1}{2\times12\times14}$							
(b)(i)	$=\frac{2+12}{2\times12\times14}$							
	$= \frac{2}{2 \times 12 \times 14} + \frac{12}{2 \times 12 \times 14}$							
	$=\frac{1}{168}+\frac{1}{28}$							
	Or,							

	$\frac{1}{24} = \frac{1}{4 \times 6}$
	$=\frac{10}{4\times6\times10}$
	$=\frac{4+6}{4\times6\times10}$
	$= \frac{4}{4 \times 6 \times 10} + \frac{6}{4 \times 6 \times 10}$
	$=\frac{1}{60}+\frac{1}{40}$
	Or,
	$\frac{1}{24} = \frac{1}{1 \times 24}$
	$=\frac{25}{1\times24\times25}$
	$=\frac{1+24}{1\times24\times25}$
	$= \frac{1}{1 \times 24 \times 25} + \frac{24}{1 \times 24 \times 25}$
	$=\frac{1}{600}+\frac{1}{40}$
	$\frac{1}{24} = \frac{1}{2 \times 3 \times 4}$
	$=\frac{2+3+4}{2\times3\times4\times9}$
(11)	$= \frac{2}{2 \times 3 \times 4 \times 9} + \frac{3}{2 \times 3 \times 4 \times 9} + \frac{4}{2 \times 3 \times 4 \times 9}$
	$=\frac{1}{108}+\frac{1}{72}+\frac{1}{54}$

SINGAPORE CHINESE GIRLS' SCHOOL PRELIMINARY EXAMINATION 2018 SECONDARY FOUR O-LEVEL PROGRAMME

CANDIDATE NAME			
CLASS	4	REGISTER NUMBER	
CENTRE NUMBER		INDEX NUMBER	

MATHEMATICS PAPER 2

Monday

30 July 2018

2 hours 30 minutes

4048/02

Additional Materials: Writing Paper Graph Paper

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen on both sides of the paper. You may use an HB pencil for any diagrams or graphs. Do not use staples, paper clips, glue or correction fluid/tape.

Answer all questions.

If working is needed for any question, it must be shown with the answer.

Omission of essential working will result in loss of marks.

The use of an approved scientific calculator is expected, where appropriate.

If the degree of accuracy is not specified in the question, and if the answer is not exact, give the answer to three significant figures. Give answers in degrees to one decimal place.

For π , use either your calculator value or 3.142, unless the question requires the answer in terms of π .

At the end of the examination, fasten all your work securely together.

The number of marks is given in brackets [] at the end of each question or part question. The total number of marks for this paper is 100.

Mathematical Formulae

Compound Interest

Total amount =
$$P(1 + \frac{r}{100})^n$$

Mensuration

Curved surface area of a cone =
$$\pi rl$$

Surface area of a sphere = $4\pi r^2$
Volume of a cone = $\frac{1}{3}\pi r^2 h$
Volume of a sphere = $\frac{4}{3}\pi r^3$
Area of triangle $ABC = \frac{1}{2}ab\sin C$
Arc length = $r\theta$, where θ is in radians
Sector area = $\frac{1}{2}r^2\theta$, where θ is in radians

Trigonometry

$$\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$$
$$a^{2} = b^{2} + c^{2} - 2bc\cos A$$

Statistics

$$Mean = \frac{\sum fx}{\sum f}$$

Standard deviation =
$$\sqrt{\frac{\sum fx^2}{\sum f} - \left(\frac{\sum fx}{\sum f}\right)^2}$$

1 (a) Given that
$$\sqrt{\frac{r}{7+q^2}} - p = r$$
,
(i) evaluate p when $q = -3$ and $r = 36$, [1]
(ii) express q in terms of p and r. [3]
(b) Mr Ang makes x bowls and y jugs.
(i) He has 22.9 kilograms of clay.
He uses 300 grams of clay for a bowl and 800 grams of clay for a jug.
Write down an equation in terms of x and y, and show that it simplifies to
 $3x + 8y = 229$. [1]
(ii) He has $6\frac{3}{5}$ hours to make the bowls and the jugs.
It takes him 8 minutes to make a bowl and 12 minutes to make a jug.
Write down an equation in terms of x and y, to represent this information. [1]
(iii) Solve these two equations to find the value of x and the value of y. [3]

2 Mr Lee went on a journey of 190 km. For the first 100 km, he drove at an average speed of v km/h. For the remaining journey, he drove at an average speed which was 25 km/h slower than the speed for the first 100 km.

(a)	Write down an expression, in terms of v , for the time taken in hours for the first 100 km.	[1]
(b)	Given that the journey took a total of 2 hours 45 minutes, form an equation in v and show that it simplifies to $11v^2 - 1035v + 10000 = 0$.	l [4]
(c)	Solve the equation $11v^2 - 1035v + 10000 = 0$, giving each answer correct to two decimal places.	[3]
(d)	Which solution in part (c) represents the speed for the first 100 km of Mr Lee's journey? Give a reason for rejecting the other solution.	[1]
()		

(e) Find the difference between the times taken for the first and second parts of the journey.
 Give your answer correct to the nearest minute. [2]

The diagram shows a parallelogram PQRS with diagonals PR and QS intersecting at T. The point U is the mid-point of QR and the line PU cuts QS at V.

(a)	Nam	Name a triangle that is congruent to triangle <i>PTQ</i> . [1]							
(b)	Prov	e that							
	(i)	triangles <i>PVS</i> and <i>UVQ</i> are similar,	[2]						
	(ii)	QV = 2VT.	[2]						
(c)	Find	the ratio of the area of triangle QVU to the area of trapezium PURS.	[2]						

- 4 (a) The point P is (5, -8) and the point Q is (-4, 7). The point L is such that $\overrightarrow{QP} = \frac{1}{2}\overrightarrow{PL}$ and O is the origin. Find $|\overrightarrow{OL}|$. [3]
 - (b) In the diagram, $\overrightarrow{OA} = \mathbf{a}$ and $\overrightarrow{OB} = \mathbf{b}$. *M* is a point on *OB* where OB = 2MB and the point *N* lies on *AB* such that 3BN = 2BA.

- (i) Express in terms of **a** and **b**, simplifying your answers where possible,
 - (a) \overrightarrow{BN} , [1]
 - (b) \overrightarrow{MN} . [2]

The point *P* lies on *OA* produced such that OA : OP = 1 : 2.

(ii)	Determine whether the points <i>M</i> , <i>N</i> and <i>P</i> are collinear. Justify your answer.	[2]
The	point Q is such that $k\overrightarrow{BQ} = \mathbf{a}$ and ONQ is a straight line.	
(iii)	Write down the value of <i>k</i> .	[1]

Diagram 1 shows the vertical cross-section of a separating funnel with a small tap at its vertex.

The funnel is in the shape of an inverted right circular cone of base radius 9 cm and height 20 cm.

It contains water and oil, which do not mix, of depths 10 cm and 5 cm respectively, with the water at the bottom.

- (a) Find the ratio of volume of water : volume of oil : capacity of the funnel. [3]
- (b) All the water in the funnel is drained through the tap into a glass test-tube. The test-tube consists of a hollow cylindrical upper part of internal radius 3 cm and a hollow hemispherical lower part of the same radius, as shown in **Diagram 2**. Find the total surface area of the test-tube in contact with the water. [5]

6 The diagram shows four points A, B, C and D on a horizontal land where A is due east of D. AB = 74 m, BC = 110 m and AC = 55 m.Angle $ADC = 40^{\circ}$ and angle $CAD = 45^{\circ}.$

7 (a) $\mathscr{E} = \{ \text{ students in Class 4B} \}$ $H = \{ \text{ students who study History} \}$ $G = \{ \text{ students who study Geography} \}$

There are 32 students in Class 4B.

13 students study History, 23 students study Geography and 11 students study both subjects.

- (i) Draw a Venn diagram to illustrate this information. [1]
- (ii) Find the total number of students who study only one of these two subjects. [1]
- (b) $D = \{ \text{ students who play the drums } \}$ $P = \{ \text{ students who play the piano } \}$

(i) Express, in set notation, 'All students who play the drums also play the piano'. [1]

- (ii) Write the set notation $D \cap P \neq \phi$ in words. [1]
- (c) A factory supplies boxes of cereals to 3 supermarkets *X*, *Y* and *Z*. The number of boxes of cereals supplied per delivery to each supermarket, the sizes and sale prices of the boxes, together with the number of deliveries made to each supermarket over a 4-month period are shown in the table below.

		Number	of boxes per	Number of deliveries	
Size of box		small	medium	large	over 4 months
	X	300	350	0	8
Supermarket	Y	250	0	200	11
	Ζ	100	200	150	13
Sale price per box		\$2.50	\$4.25	\$7.80	

It is given that
$$\mathbf{A} = \begin{pmatrix} 300 & 350 & 0 \\ 250 & 0 & 200 \\ 100 & 200 & 150 \end{pmatrix}$$
 and $\mathbf{B} = \begin{pmatrix} 8 & 11 & 13 \end{pmatrix}$.

(i) Calculate BA. [1]

[1]

(ii) Explain what the elements of **BA** represent.

(iii) Given that
$$\mathbf{C} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$
, calculate AC. [1]

- (iv) Describe what is represented by the elements of AC. [1]
- (v) Using matrix multiplication, calculate the total amount of money that will be collected from the sale of all the boxes of cereals to Supermarket Z over 4 months.
 [2]

8 Answer the whole of this question on a sheet of graph paper.

A particle moves in a straight line so that at time *t* seconds, its distance *y* metres from a fixed point, *O*, is given by $y = t + \frac{32}{t+2} - 8$.

The following table gives some corresponding values of *t* and *y*.

<i>t</i> (seconds)	0	1	2	3	4	5	6	8	10	12	14
y (metres)	8	3.67	2	1.4	1.33	1.57	2	3.2	4.67	k	8

- (b) Using a scale of 1 cm to represent 1 second, draw a horizontal *t*-axis for $0 \le t \le 14$. Using a scale of 2 cm to represent 1 metre, draw a vertical *y*-axis for $0 \le y \le 8$. On your axes, plot the points given in the table and join them with a smooth curve. [3]
- (c) Explain the significance of the *y*-intercept. [1]
- (d) Find the time when the particle is nearest to the fixed point, O. [1]
- (e) Mark and label *P*, the point on your graph when the particle is 4 metres from the fixed point, *O* and moving away from *O*. [1]
- (f) Find the length of time for which the particle is less than or equal to 2.5 metres from the fixed point, *O*. [1]
- (g) By drawing a tangent, find the gradient of the curve at t = 6. [2]
- (h) The equation $t + \frac{32}{t+2} = 13 \frac{1}{4}t$ can be solved by drawing a straight line on the same axes.
 - (i) Draw this line for $0 \le t \le 14$. [1]
 - (ii) Write down the t-coordinates of the points where the line intersects the curve.

[2]

[1]

9 The cumulative frequency graph shows the distribution of marks of 150 students in a Mathematics examination.

Cumulative frequency

Marks

9 (a) Use the graph to estimate

(i) the number of students who score more than 36 marks,	[1]
--	-----

- (ii) the interquartile range. [2]
- (b) Two students are selected at random. Find the probability that
 - (i) both students score more than 36 marks, [1]
 - (ii) one student scores at most 64 marks while the other student scores more than 80 marks. [2]
- (c) (i) Copy and complete the grouped frequency table of the marks of the 150 students.

x (marks)	$0 < x \le 20$	$20 < x \le 40$	$40 < x \le 60$	$60 < x \le 80$	$80 < x \le 100$
Number of students					

(ii) Using your grouped frequency table, calculate an estimate of

(a)	the mean mark,	[1]
-----	----------------	----	---

- (b) the standard deviation.
- (d) The same group of students took a Science examination. The box and whisker plot shows the distribution of their marks.

0	20	40	60	80	

marks

- (i) Which examination was more difficult? Justify your answer. [1]
- (ii) Compare and comment on the consistency of the performances of the students in the two examinations. [1]

[1]

[1]

10 (a) Mrs Wong had a budget of \$2000 to spend on buying new kitchen flooring. A sketch of the kitchen floor plan is shown below. All angles shown in the diagram are right angles.

Mrs Wong planned to use either tiles or single coloured vinyl floor covering to cover the whole of the kitchen floor.

Each square tile measures 20 cm by 20 cm. A box of 25 floor tiles costs \$66.25. Floor tiles are only sold in complete boxes.

The vinyl floor covering is cut to the required length from a roll. A roll of vinyl floor covering is 1.8 metres wide and is sold at a price of \$118.70 per metre length.

It is sold in lengths measured in a whole number of metres only.

Are both types of flooring materials within Mrs Wong's budget? Show all your working and give reasons for your answers.

- (b) Mrs Wong saw an advertisement for a refrigerator and bought it using a payment plan. The total price of the payment plan is 12% more than the advertised price. The payments are calculated as shown.
 - deposit of one-third of total price
 - 8 equal instalments of \$92.60 per month
 - final payment of \$200

Find the advertised price.

(c) Mrs Wong also bought a washer which cost \$569.24, inclusive of 7% Goods and Services Tax (GST).
 Find the amount of GST paid by Mrs Wong. [2]

[3]

[5]

Preliminary Examination 2018 Secondary Four O Level Mathematics Paper 2 Solutions

1	(a)(i)	-34.5				
	(a)(ii)					
		$\sqrt{7+q^2} - p = r$				
		$\frac{r}{7+a^2} = (r+p)^2$				
		/ + <i>q</i>				
		$q^2 = \frac{r}{(r-r)^2} - 7$				
		$(r+p)^2$				
		$a - + \left \frac{r}{r} - 7 \right $				
		$\int q^{-1} \sqrt{(r+p)^2} $				
	(b)(i)	300x + 800y = 22900				
	(b)(ii)	8x + 12y = 396 or $2x + 3y = 99$				
	(b)(iii)	substitution or elimination				
		x = 15				
2	(a)	$\frac{y=25}{100}$				
2	(<i>a</i>)					
	(b)					
	(0)	$\frac{100}{v} + \frac{20}{v-25} = \frac{11}{4}$				
		V V = 2.5 + 4				
		100(v-25)+90v 11				
		$\frac{1}{v(v-25)} = \frac{1}{4}$				
		$760v - 10000 = 11v^2 - 275v$				
		$11v^2 - 1035v + 10000 = 0$				
	(c)	$-(-1035) \pm \sqrt{(-1035)^2 - 4(11)(10000)}$				
		2(11)				
		= 83.16 (2dp) or $10.93 (2dp)$				
	(d)	83.16				
	(-)	The other solution is rejected because it will give a <u>negative</u>				
		speed for the second part of the journey.				
	(e)	90 100				
		$\overline{83.1589-25}^{-}\overline{83.1589}$				
		$= 21 \min(\text{nearest min})$				

3	(a)	Triangle <i>RTS</i>			
	(b)(i)	$P\hat{V}S = U\hat{V}Q$ (vertically opposite angles)			
		$\hat{VPS} = \hat{VUQ}$ (alternate angles, <i>PS</i> parallel to <i>QR</i>)			
		$\hat{VSP} = \hat{VQU}$ (alternate angles, <i>PS</i> parallel to <i>QR</i>)			
		Thus, triangles <i>PVS</i> and <i>UVQ</i> are similar.			
	(b)(ii)	$\frac{QV}{QR} = \frac{1}{2}$			
		QS = 3			
		QS = 2QI			
		$\frac{QV}{2QT} = \frac{1}{3}$			
		<i>QV</i> _ 2			
		\overline{QT} $\overline{3}$			
	(-)	Thus, $QV = 2VT$			
	(C)	$\frac{\text{area of } \Delta QVU}{\text{area of transgium } DUBS}$			
		area of ΔOVU area of ΔOPU			
		$=\frac{\operatorname{area of } \Delta QVU}{\operatorname{area of } \Delta QPU} \times \frac{\operatorname{area of } \Delta QVU}{\operatorname{area of tranezium} PURS}$			
		$=\frac{1}{3}\times\frac{5}{9}$			
		_ 1			
		$=\frac{1}{9}$			
4	(2)	Ratio is 1 : 9			
4	(a)	$\overrightarrow{QP} = \frac{1}{2}\overrightarrow{PL}$			
		$2\left(\overrightarrow{OP} - \overrightarrow{OQ}\right) = \overrightarrow{OL} - \overrightarrow{OP}$			
		\overrightarrow{OL}			
		$=2\left[\binom{5}{-8}-\binom{-4}{7}\right]+\binom{5}{-8}$			
		$\left(\begin{array}{c}23\end{array}\right)$			
		$= \begin{pmatrix} -38 \end{pmatrix}$			
		$\left \overrightarrow{OI}\right = \sqrt{23^2 + (-38)^2}$			
		= 44.4 units (3sf)			
	(b)(i) (a)	2 2.			
		$\frac{1}{3}\mathbf{a}-\frac{1}{3}\mathbf{b}$			
	(b)(i)(b)	$\frac{1}{2}\mathbf{b} + \frac{2}{2}\mathbf{a} - \frac{2}{2}\mathbf{b}$			
		2^{2} 3^{2} 3^{2}			
		$=\frac{2}{3}\mathbf{a}-\frac{1}{6}\mathbf{b}$			

4	(b)(ii)	\overrightarrow{MP}					
		$=2\mathbf{a}-\mathbf{b}$					
		$= 3\left(\frac{2}{3}\mathbf{a} - \frac{1}{6}\mathbf{b}\right)$					
		$=3\overrightarrow{MN}$					
		Since $\overrightarrow{MP} = 3\overrightarrow{MN}$, points <i>M</i> , <i>N</i> and <i>P</i> are collinear.					
	(b)(iii)	1					
_		2					
5	(a)	vol of water : vol of oil : vol of tunnel = 10^3 · 15^3 10^3 · 20^3					
		= 8 : 19 : 64					
	(b)	Volume of water					
		$=\frac{8}{100}\times\frac{1}{\pi}(9^2)20$					
		64 3 ()					
		$= 67.5\pi$ cm ³					
		Vol of water in cyindrical part of test-tube					
		$-67.5\pi - \frac{2}{2}\pi(3)^3$					
		$-67.5\pi - \frac{1}{3}\pi(3)$					
		$=49.5\pi$					
		Height of water in cylindrical part of test-tube					
		$=\frac{49.5\pi}{2}$					
		$=\frac{1}{\pi(3)^2}$					
		= 5.5					
		Surface area in contact with water					
		$= 2\pi(3)^2 + 2\pi(3)(5.5)$					
		$=160 \mathrm{cm}^2 (3 \mathrm{sf})$					
6	(a)(i)	55sin95°					
		$\frac{1}{\sin 40^{\circ}}$					
		$= 85.2 \mathrm{m} (3 \mathrm{sf})$					
	(a)(ii)	$\frac{1}{-1} \times 55 \times 85\ 2392 \times \sin 45^{\circ}$					
		$\frac{-1}{2}$					
		$=1660 \text{ m}^2 (3 \text{ sf})$					
	(a)(iii)	$\angle BAC = \cos^{-1} \left(\frac{110^2 - 55^2 - 74^2}{-2(55)(74)} \right)$					
		$= 116.2^{\circ}$ (1dp)					
	(a)(iv)	$360^{\circ} - (116.2403^{\circ} - 45^{\circ})$					
		$= 288.8^{\circ} (1 dp)$					

6	(b)	perpendicular distance from B to AC produced				
		$=74\sin 63.7597^{\circ}$				
		=66.3741				
		height of tower				
		$= 66.3741 \tan 10^{\circ}$				
		=11.7 m(3 sf)				
7	(a)(i)	\mathcal{C} H 2 11 12 G 7				
	(a)(ii)	14 students				
	(b)(ii)	$D \subset P$				
	(b)(ii)	There are some students who play the drums <u>and</u> the piano.				
	(c)(i)	(6450 5400 4150)				
	(c)(ii)	Total number of boxes of cereals of <u>each size</u> delivered to all supermarkets over 4 months .				
	(c)(iii)	$ \begin{pmatrix} 650 \\ 450 \\ 450 \end{pmatrix} $				
	(c)(iv)	Total number of boxes of cereals delivered to each of the supermarkets per delivery.				
	(c)(v)	$13(100 \ 200 \ 150) \begin{pmatrix} 2.5 \\ 4.25 \\ 7.8 \end{pmatrix}$				
		= (29510)				
		Total amount is \$29510				
8	(a)	6.29				
	(b)	correct plotted points (at least 8 points) smooth curve				
	(c)	Object is <u>8 metres from O at $t = 0$</u>				
	(d)	3.6 ± 0.1 and 3.8 seconds				
8	(e)	<i>P</i> labelled on graph at $(9.1 \pm 0.1, 4)$				
	(f)	5.3 ± 0.2				

	(g)	Tangent drav	vn and calcula	tion of gradie	nt			
		0.5 ± 0.05						
	(h)(i)	Draw the line	Draw the line $y = 5 - \frac{1}{4}t$ for $0 \le t \le 14$.					
	(h)(ii)	0.6 ± 0.1						
		7.8 ± 0.1						
9	(a)(i)	126 students						
	(a)(ii)	73 – 45						
		= 28 marks						
	(b)(i)	105						
		149						
	(b)(ii)	$\frac{82}{100} \times \frac{20}{100} \times \frac{20}{100}$	2					
		150 149 328						
		$=\frac{320}{2235}$						
	(c)(i)	x (marks)	$0 < x \le 20$	$20 < x \le 40$	$40 < x \le 60$	$60 < x \le 8$	30	$80 < x \le 100$
		No of	10	20	40 or 41	60 or 59)	20
		students						
	(c)(ii)(a)	58 marks						
	(c)(ii)(b)	21.7 marks						
	(d)(i)	Science exam median mark	mination is 1	nore difficult	as it has a	lower		
	(d)(ii)	The interquation Hence the provident the second sec	rtile range for performance	the Science e for Science	xamination is examination	larger. is less		
10	(a)	No of boxes	of tiles require	ed				
		$=\frac{5\times5+2.6}{5\times5+2.6}$	$-5 \times 5 + 2.6$. 25					
		0.2×0.2	. 20					
		= 27.6						
			number)					
		$\frac{101a1 \cos t}{28 \times 66.25}$						
		$= 28 \times 00.23$ - \$1855						
		- #1055						
		Length requi	red					
		Longin requi						

	$=\frac{27.6}{1.8}$
	1.8
	= 16 (whole number)
	Cost of vinyl flooring
	$=16 \times 118.7$
	= \$1899.20
	Both types of floorings are within Mrs Wong's budget.
(b)	Let advertised price be A
	$\frac{1}{3} \times \frac{112A}{100} + 8 \times 92.6 + 200 = \frac{112A}{100}$
	$940.8 = \frac{56A}{75}$
	A = \$1260
(c)	$\frac{569.24}{107} \times 7$
	=\$37.24