

Pasir Ris Secondary School

Name	Class	Register Number						
SECONDARY 4 EXPRESS MID-YEAR EXAMINATION 2018								
SCIENCE (CHEMISTRY)	5076 May 2018							

1 hour

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in.

Write in dark blue or black pen.

You may use a soft pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, glue or correction fluid.

Section A

There are **ten** questions in this section. Answer **all** questions.

For each question there are four possible answers, A, B, C and D.

Choose the **one** you consider correct and record your choice in the boxes provided on **page 4**.

Section B & C

Answer **all** questions in the spaces provided.

The number of marks is given in brackets [] at the end of each question or part question. A copy of the Periodic Table is printed on page 8.

Section	Marks
Α	/10
В	/20
С	/10
Total	/40

This document consists of 9 printed pages (inclusive of this page).

Setter: Mr Mohd Riffaii

[Turn over

Section A: Multiple Choice Questions [20 marks]

21 A mixture contains an organic liquid **J**, and a dilute solution of potassium chloride. Liquid **J** boils at 21 °C and is immiscible in water.

Which two methods of separation should be used in sequence to obtain samples of liquid **J** first before solid potassium chloride?

-		r
	method 1	method 2
Α	use a separating funnel	evaporation
В	evaporation	sublimation
С	distillation	filtration
D	filtration	evaporation

22 Which diagram represents a mixture of diatomic elements?

В

D

23 The diagrams represent four different compounds.

In which row are the compounds correctly named?

	1	2	3	4
Α	ammonia	sodium chloride	methane	water
В	methane	ammonia	sodium chloride	water
С	water	ammonia	methane	sodium chloride
D	water	methane	ammonia	sodium chloride

www.KiasuExamPaper.com

24 Study the following reaction scheme.

What is the identity of metal carbonate W?

- A copper(II) carbonate
 B iron(II) carbonate
 C iron(III) carbonate
 D zinc carbonate
- 25 The diagrams show a series of experiments carried out using chlorine water and bromine water.

Which test tube, A, B, C or D shows no change in colour?

26 Which of the following processes is an endothermic reaction?

- A combustion B freezing
- C photosynthesis D respiration

27 Sulfur undergoes changes when it reacts with air and water. The substances that sulfur form are represented in the following stages.

Stage 1	Stage 2	Stage 3	Stage 4
S	SO ₂	SO ₃	H_2SO_4

Which of the following shows the correct change in oxidation states of sulfur in each stage of the process?

	S	SO ₂	SO ₃	H_2SO_4
Α	0	+2	+6	+8
В	0	+4	+6	+6
С	+2	0	+6	+6
D	+6	+6	+2	0

- 28 Which statements about the pollutant carbon monoxide are correct?
 - 1 It is a colourless and odourless gas.
 - 2 It is formed by the complete combustion of natural gas.
 - 3 It reacts with the haemoglobin in the blood and reduce the transport of oxygen.
 - A 1 and 2 only
 - B 2 and 3 only
 - C 1 and 3 only
 - **D** 1, 2 and 3
- **29** The diagram shows a complete circuit.

Which solid, when placed between P and Q, would cause the light bulb L to light up?

www.KiasuExamPaper.com 100

- 30 In the preparation of salts, which of the following would require the use of a burette and pipette?
 - A calcium sulfate B sodium sulfate
 - C silver sulfate D zinc sulfate
- 31 The diagram shows an upward delivery method for gas X.

What is the nature of the gas?

- A The gas is soluble in water and denser than air.
- **B** The gas is soluble in water and less dense than air.
- **C** The gas is insoluble in water and denser than air.
- **D** The gas is insoluble in water and less dense than air.
- **32** Which ionic equation represents the neutralisation of dilute sulfuric acid with aqueous sodium hydroxide?
 - $\mathbf{A} \quad \mathbf{H}^{+} + \mathbf{O}\mathbf{H}^{-} \rightarrow \mathbf{H}_{2}\mathbf{O}$
 - $\textbf{B} \quad \text{NaOH} \ \ \textbf{+} \ \ \textbf{H}^{\scriptscriptstyle +} \ \rightarrow \ \textbf{Na}^{\scriptscriptstyle +} \ \textbf{+} \ \textbf{H}_2\textbf{O}$
 - $\textbf{C} \quad H_2SO_4 \quad \textbf{+} \ \textbf{2OH}^- \rightarrow \ \textbf{SO}_4{}^{2-} \ \textbf{+} \ \textbf{2H}_2O$
 - **D** SO_4^{2-} + 2Na⁺ \rightarrow Na₂SO₄

33 The diagram shows a cooling curve of steam.

Which of the following options correctly describes the changes that occur between points C to D?

	separation of particles	energy of particles	attractive forces between particles				
Α	decreases	increases	decreases				
В	decreases	decreases	increases				
С	increases	increases	decreases				
D	increases	decreases	increases				

34 An element has an atomic number of 4.

Which statement about this element is correct?

- A It forms ions by losing electrons.
- **B** It has four occupied electron shells in each of its atoms.
- **C** It is an unreactive gas at room temperature and pressure.
- **D** It is found in Group IV of the Periodic Table.
- **35** An element X forms an ion of X^{2+} .

Which group of the Periodic Table is this element found in?

- **A** Group I
- B Group II
- **C** Group V
- D Group VI

36 Some zinc carbonate was reacted with excess dilute nitric acid.

The graph shows the volume of carbon dioxide gas evolved at 20 second intervals until the reaction has finished. Graph 1 shows the results obtained from this reaction.

Which of the following could have been changed to produce graph 2?

- A The concentration of acid was doubled.
- **B** The concentration of acid was halved.
- **C** The mass of zinc carbonate was halved.
- **D** The particle size of the zinc carbonate was doubled.
- 37 The reaction between hydrochloric acid and calcium carbonate is shown.

 $2HCl + CaCO_3 \rightarrow CaCl_2 + H_2O + CO_2$

What volume of 1.0 mol/dm³ hydrochloric acid is needed to react completely with 1.0 g of calcium carbonate ($M_r = 100$)?

- **A** 10 cm³ **B** 20 cm³
- **C** 100 cm^3 **D** 200 cm^3

38 Which of the following substances is **not** present in the reaction during the extraction of iron?

A calcium oxideB calcium carbonateC calcium hydroxideD calcium metasilicate

- 39 Which oxide will neither react with acids nor alkalis?
 - A carbon dioxide B carbon monoxide
 - C magnesium oxide D zinc oxide
- **40** The results of three metal displacement experiments are tabulated as shown.

experiment	metal	metal nitrate solution								
coperiment	metai	JNO ₃	KNO ₃	LNO ₃						
1	J	- no reaction L displace								
2	K	J displaced	J displaced - L di							
3	L	no reaction	-							

What is the order of reactivity of these metals?

	most reactive		least reactive
Α	J	К	L
В	K	L	J
С	K	J	L
D	L	J	К

End of Paper

	aper.com
e (r.t.p.).	uExamP;
pressure	ww.Kias
ture and	>
tempera	
at room	
$24\mathrm{dm}^3$	
y gas is	
le of an	
one mo	
volume of	
The	

	0	2 helium 4	+ 4	01	Ne	neon	20	18	Ar	argon 40	36	ŗ	krypton	84	54	Xe	xenon	101	86	R	radon	1				71	Ľ	Intetium	C/L	103	۲	lawrencium	Ŧ
	NI		•	5	ш	fluorine	19	17	10	chlorine 35.5	35	Ъ	bromine	80	53		iodine 177	171	85	At	astatine	1				70	ď	ytterbium	1/3	102	٩	nobelium	1
100	N			20 (0	oxygen	16	16	S	sultur 32	34	Se	selenium	79	52	Te	tellurium	07	84	P	polonium	1	116	Z	livermorium -	69	Ta	thulium	FOL	101	pW	mendelevium	I
	^		,		z	nitrogen	14	15	۵.	phosphorus 31	33	As	arsenio	75	51	Sb	antimony	77	83	ē	bismuth	RNZ				68	ш	erbium	101	100	Ē	fermium	1
	≥		<	9	U	carbon	12	14	S	silicon 28	32	Ge	germanium	73	50	Sn	들	2	82	е С	lead 207	201	114	H I	Tierovium	67	위	holmium	COL	66	ß	einsteinium	1
	=			D I	œ	boron	11	13	٩l	aluminium 27	31	Ga	gallium	70	49	Ę	mdium 445	21	81	Τl	thallium 204	204				99	2	dysprosium	103	98	ັວ	californium	1
											30	Zn	zinc	65	48	8	cadmium	711	80	В.	mercury	102	112	ธ	copernicium -	65	₽	terbium	AGL	97	剐	berkelium	Ĩ
											29	CC	copper	64	47	Bg	silver 400	001	19	Au	gold	IRI	111	Rg	roentgenium	64	Gd	gadolinium	/GL	96	G	curium	î.
dno											28	ī	nickel	59	46	В	palladium	001	78	٤	platinum	CRI	110	Ds	darmstadhum	63	Ш	europium	761	95	Am	americium	1
Gro											27	00	cobalt	59	45	Rh	thodium	103	11	L	midium 400	182	109	Mt	mentnerrum	62	Sm	samarium	0GL	94	Ъ	plutonium	ī
		hydrogen 1									26	Fe	iron	56	44	Ru	ruthenium	101	76	So	osmium 400	180	108	E HS	hassium	61	Pm	promethium	1	93	dN	neptunium	Ţ
			70								25	Mn	manganese	55	43	Ц	technetium		75	Re	4 oc	180	107	ВЧ	-	60	PN	neodymium	144	92	∍	uranium	238
			and the second se	number	00		mass	1			24	ັບ	chromium	52	42	Mo	molybdenum	02	74	8	tungsten	164	106	Sg	seaborgium -	59	ŗ	praseodymium	141	91	Pa	protactinium	231
		Kev		(atomic) r	omic sym	name	ve atomic				23	>	vanadium	51	41	q	midoliu	80	73	Та	tantalum 4 0 4	101	105	80	aubindub	58	Se	cerium	140	6	F	thorium	232
				proton	atc		relati	8			22	F	titanium	48	40	Z	zirconium	R	72	Ŧ	hafnium 470	1/8	104	ł	Rutherfordium	57	La	lanthanum	139	89	Ac	actinium	ï
											21	Sc	scandium	45	39	≻	yttrium	RO	57-71	lanthanoids		000	89 - 103	acuroids		S							
	=			4	Be	beryllium	6	12	Mg	magnesium 24	20	Ca	calcium	40	38	പ്	strontium	00	56	Ba	4 3 7	151	88	ка	radium -	anthanoid				actinoids			
			•	מי (י	ב	lithium	7	11	Na	sodium 23	19	¥	potassium	39	37	å	mpiqinu	8	55	S	caesium 4.2.2	133	87	F	francium								

The Periodic Table of Elements

Pasir Ris Secondary School

Name	Class	Register Number

SECONDARY 4 EXPRESS / 5 NORMAL ACADEMIC MID YEAR EXAMINATION 2018

SCIENCE (PHYSICS, CHEMISTRY)

Paper 3 Chemistry Monday 0800 – 0915

Candidates answer on the Question Paper.

No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number on all the work you hand in. You may use a soft pencil for any diagrams, graphs, tables or rough working. Write in dark blue or black pen.

Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate. You may use lose marks if you do not show your working or if you do not use appropriate units.

Section A

Answer **all** questions. Write your answers in the spaces provided on the question paper.

Section B

Answer any **two** questions. Write your answers in the spaces provided on the question paper.

A copy of the Data Sheet is printed on page 15. A copy of the Periodic Table is printed on page 16.

At the end of the examination, fasten all your work securely together. The number of marks is given in brackets [] at the end of each question or part question.

For Exam	niner's Use
Section A	
Total	

5076/03

07 May 2018

1 hour 15 minutes

This document consists of **16** printed pages, including the cover page.

Setter: Mr Mohd Riffaii

[Turn over

Section A

Answer all the questions in the spaces provided.

Use three words from the box below to describe each substance in Table 1.1. 1 (a) The words can be used once, more than once, or not at all.

solid	liquid	gas	atom	molecule	
	element	compound	mixture	ions	

substance	diagram	description words
A	+ - + - - + - + + - + - - + - +	1 2 3
В		1 2 3
С		1 2 3

(b) (i) Explain why substance A will conduct electricity when dissolved in water.

[1] (ii) Suggest another way of making substance A conduct electricity. [1]

For Examiner's Use

3]

2 Spots of different coloured dyes were placed along a pencil line on a sheet of chromatography paper. The paper was then placed in a solvent.

Fig. 2.1 shows the chromatogram obtained.

Hydr	rogen b	romide has a melting point of –87 °C and a boiling point of –67 °C.	For Examiner's Use
(a)	Draw hydroo	a 'dot and cross' diagram to show the arrangement of electrons in a molecule of gen bromide. Show only the outer shell electrons.	
			[2]
(b)	Hydro	gen bromide dissolves in water to form an acidic solution which is colourless.	
	(i)	Give the formula of the ion which causes the acidity.	[1]
	(ii)	Describe what is seen when chlorine gas is bubbled through the solution.	
			[1]
	(iii)	Construct an ionic equation, including state symbols, for the reaction you have described in (ii) .	
			[2]

3

For Zinc blende is an ore that contains mainly zinc sulfide (ZnS). The extraction of zinc from its ore 4 Examiner's Use happens in the blast furnace. The ore of zinc blende is roasted in air (oxygen) to form zinc oxide which is then reduced with carbon monoxide in the blast furnace, similar to the extraction of iron from haematite. The extraction of zinc can be represented by the equation as shown. $ZnO + CO \rightarrow Zn + CO_2$ State which substance is reduced and give a reason for your answer. (a) substance reduced reason [2] (b) Zinc produced by the blast furnace is often alloyed to increase its hardness and strength. Brass is an alloy of zinc and copper. Draw the structure of brass in the box provided in Fig. 4.1. (i) Fig. 4.1 [1] With reference to your drawing in Fig. 4.1, explain why brass is harder and stronger (ii) compared to pure zinc. [2]

5 The reaction between copper(II) oxide and hydrogen can be represented by the equation as Shown.

$$CuO(s) + H_2(g) \rightarrow H_2O(g) + Cu(s)$$

In this reaction, 0.40 g of solid copper(II) oxide was used.

(a) (i) Calculate the number of moles of copper(II) oxide used in the reaction.

- (ii) Hence, determine the number of moles of hydrogen gas is required for all the copper(II) oxide to be used up in the reaction.
- [1]

[1]

- (b) It is also known that 165 cm³ of hydrogen gas was used in the reaction.
 - (i) Using your answer from (a), determine the limiting reagent. Explain your answer clearly by showing all relevant calculations.

(ii) Hence or otherwise, calculate the mass of water vapour produced at the end of the reaction.

[2]

[3]

For 6 Part of the Periodic Table is shown in Fig. 6.1. Examiner's The letters are **not** the actual chemical symbol of the elements. Use V Х Y W Ζ Fig. 6.1 For each of the following statements, decide whether the statement is true or false and state a reason for your decision. W is more metallic than Z. (a) [1] (b) V is less reactive than W. [1] (C) V has a lower melting point than W. [1] X has more electron shells than Y. (d) [1] -----

8 (a) A chemical company makes salts for use in industries. Table 8.1 shows some names and formulae of salts with the names of the acids and other compounds used to make them.

Complete the table by writing the missing information.

name of salt	formula of salt	name of acid used to make salt	name of the other compound used to make salt
sodium sulfate	Na_2SO_4		
potassium phosphate	K ₃ PO ₄	phosphoric acid	
silver chloride	AgC <i>l</i>		
calcium phosphate		phosphoric acid	calcium hydroxide

Table 8.1

(b) Fig. 8.2 shows a rusted car. However, not all the parts have rusted. The areas that have not rusted are either painted or have plastic coatings.

Fig. 8.2

Explain how the paint and plastic coating can slow down rusting.

(c) Harmful gases released into the atmosphere can form acid rain which speeds up rusting.Name one such gas which causes acid rain and state its source.

[3]

[2]

Section B

Answer any **two** questions in this section.

Write your answers in the spaces provided.

9 Read the information about chlorine.

Chlorine ranks among the top ten chemicals produced today. Chlorine is produced by passing an electric current through a concentrated solution of sodium chloride or through molten sodium chloride. This process is one of the most important commercial processes in industry. Chlorine, in one form or another, is added to most swimming pools, spas, and public water supplies because it kills bacteria that cause disease. Many people also use chlorine to bleach their clothes. Large paper and pulp mills use chlorine to bleach their products.

Two naturally occurring isotopes of chlorine exist, chlorine-35 and chlorine-37. Chlorine exists commonly both in the Earth's crust and in seawater as sodium chloride. Smaller amounts of potassium chloride and magnesium chloride also occur in seawater.

Chlorine is very reactive. The reaction between chlorine and other elements can often be vigorous. For example, chlorine reacts explosively with hydrogen to form hydrogen chloride.

(a) The information contains examples of a mixture. Identify **two** mixtures in the information.

(b) The chemical symbols of the two chlorine isotopes are shown below.

Compare and contrast the structures of the nuclei in chlorine isotopes.

[1]

For Examiner's Use

- (c) Magnesium burns in chlorine gas to produce magnesium chloride.
 - (i) Complete Table 9.1 which gives information about the two ions in magnesium chloride.

Tab	le	9.	1
IUN		Υ.	

name of ion	number of protons	number of neutrons	number of electrons	electronic structure
magnesium ion	12			2,8
chloride ion	17	18		

(ii) Draw a 'dot' and cross diagram to show the arrangement of electrons in magnesium chloride. Show only outer shell electrons.

(d)	Chlori room f	ne can react with hydrogen to form hydrogen chloride. Hydrogen chloride is a gas at temperature.	
	(i)	In terms of electrons, describe the bonding in hydrogen chloride.	
			[1]
	(ii)	At room temperature, magnesium chloride is a solid while hydrogen chloride is a gas. Use your knowledge of the bonding in magnesium chloride and hydrogen chloride to explain the difference in physical state.	
			[2]

[2]

[2]

For Examiner's Use

0	(a)	Hydro	ochloric acid is used for rust removal while sodium hydroxide is used in detergents.	For Examiner's Use
		(i)	State the colour of Universal Indicator in dilute hydrochloric acid and in aqueous sodium hydroxide.	
				[2]
		(ii)	Explain briefly, in terms of ions in solution, the reason for the difference in acidity and alkalinity of hydrochloric acid and sodium hydroxide solutions.	
				[2]
		(iii)	The reaction between hydrochloric acid and magnesium metal produces a soluble salt, magnesium chloride. Describe the steps to obtain a pure sample of magnesium chloride from the reaction.	
				- /-
				[4]

(b) In an experiment, 20.0 cm³ of 1.50 mol/dm³ sodium hydroxide exactly neutralised 25.0 cm³ of hydrochloric acid. Using the chemical equation provided for the reaction, calculate the concentration of the hydrochloric acid used.

 $NaOH + HCl \rightarrow NaCl + H_2O$

Experiment 1 was performed using 10 g of powdered calcium carbonate. Experiment 2 was performed using 10 g calcium carbonate in lumps.

(b)	Sketc Label	h on Fig. 11.1 the speed of reaction for 5 g of powdered calcium carbonate . this 'Experiment 3'.	[1]
(c)	The te 2.	emperature of the mixtures increased during the reaction in both experiments 1 and	
	(i)	Suggest whether the reactions are exothermic or endothermic.	
			[1]
	(ii)	Explain in terms of bond breaking and bond forming for your answer in c (i) .	
			[2]
	(iii)	Suggest a method that can be used to accurately determine that all the acid has been used up during the reaction.	
			[1]

End of Paper

DATA SHEET

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

PRSS_2018_MYE_S4E5NA_SCI_5076_P3

								S	dno								
_	=											=	≥	^	N	NI	0
							+										2
							I										He
				Key			hydrogen 1										helium 4
e	4	-	proton (atomic) r	number							2	9	2	8	0	10
:-	Be		ator	mic sym	pol							8	U	z	0	ш	Ne
lithium b	eryllium			name								boron	carbon	nitrogen	oxygen	fluorine	neon
7	6		relative	e atomic	mass							11	12	14	16	19	20
11	12	E.										13	14	15	16	17	18
Na	Mg											AI	ŝ	۵.	S	1D	Ar
23 m	agnesium 24											aluminium 27	silicon 28	phosphorus 31	sultur 32	chlorine 35.5	argon 40
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
¥	Ca	Sc	⊨	>	ບັ	Mn	Fe	ő	ī	S	Zu	Ga	ge	As	Se	ы	Кr
potassium	calcium so	andium	titanium	vanadium	chromium	manganese	iron	cobalt	nickel	copper	zinc	gallium	germanium	arsenic	selenium	bromine	krypton
39	40	45	48	51	52	55	56	59	59	64	65	70	73	75	79	80	84
37	38	39	40	41	42	43	44	45	46	47	48	49	20	51	52	53	54
ď	S	~	Z	q	Mo	Ľ	Ru	格	Pd	BA	8	Ę	Sn	ß	Te	П	Xe
rubidium s	trontium y	vttrium	zirconium	niobium	molybdenum	technetium	ruthenium	rhodium	palladium	silver	cadmium	indium	£	antimony	tellurium	iodine	xenon
85	88	89	91	93	96		101	103	106	108	112	115	119	122	128	127	131
55	56 51	7-71	72	73	74	75	76	11	78	79	80	81	82	83	84	85	86
cs	Ba lan	thanoids	Ŧ	Та	3	Re	So	Ŀ	٤	Au	ВН	T1	8	ö	Ъ	¥	Rn
caesium	barium		hafnium	tantalum	tungsten	rhenium	osmium	indium	platinum	plog	mercury	thallium	lead	bismuth	polonium	astatine	radon
133	13/		1/8	181	184	186	190	192	195	19/	201	204	207	209	I	I	1
87	88 89	- 103	104	105	106	107	108	109	110	111	112		114		116		
Ľ,	Ra	ctinoids	ž	8	Sg	R.	۶	ğ	Š	Rg	ວົ		E .		۲ ۲		
francium	radium	2	outherfordium	aubindub	seaborgium	pohrum	nassium	meitnenum	darmstadtium	roentgenium	copernicium		Tierovium		livermorium		
	l.										0						
lant	hanoids		57	58	59	60	61	62	63	64	65	99	67	68	69	20	71
			La	Se	ŗ	PN	Ъ	Sm	Ш	Gd	đ	5	위	ш	Tm	۲b	E
			lanthanum	cenium	praseodymium	neodymium	promethium	samarium	europium	gadolinium	terbium	dysprosium	holmium	erbium	thulium	ytterbium	Iutetium
			139	140	141	144	1	150	152	157	159	163	165	167	169	173	175
ac	tinoids	2	89	6	91	92	93	94	95	96	67	86	66	100	101	102	103
			Ac	f	Ра	∍	dN	Ъ	Am	E O	剐	5	З	ш	Md	No	ב
			actinium	thorium	protactinium	uranium	neptunium	plutonium	americium	curium	berkelium	californium	einsteinium	fermium	mendelevium	nobelium	lawrencium
			i	232	107	230	l	t	1	i)	ĩ	ĩ	ı	1	1	ł	E

The Periodic Table of Elements

www.KiasuExamPaper.com

www.KiasuExamPaper.com 122

							5	
							1	
	Answers	s for Pape	er 1					
	21	A	26	С	31	D	36	C
	22	Α	27	B	32	A	37	B
	23	D	28	C	33	B	38	С
	24	Α	29	< A	34	A	39	В
	25	С	30	B/	35	В	40	С
\langle						<i>I</i> E		

SECONDARY 4 EXPRESS MID-YEAR EXAMINATION 2018

SCIENCE (CHEMISTRY)

Paper 1: Friday 0800 - 0900

Paper 3: Monday 0800 - 0915

MARKING SCHEME

This document consists of **14** printed pages (inclusive of this page).

Setter: Mr Mohd Riffaii

[Turn over

Section A: Structured Questions [45 marks]

1	(\mathbf{a})					[0]
	(a)		description words			ျ
		1 soli	d	Stude	ents incorrectly state	
		2 ion	S	mixtu	ire due to the different	
		3 cor	npouna	Charges.		
		1 liqu	iid	Stude		
		2 element			o the connecting atoms or	
		5 ato	111	mole		
				Stude	ants incorrectly state	
		1 gas	5	mixt	re due to the different	
		2 con	npound	colou	red shapes failing to	
		3 mo	lecule	appre	ciate the line or as	
				atom	S.	
		Any o	order			
					1 mark for every 3 correct	
					answers	
	(b)	<i>(</i> i)	Presence of mobile ions to		Missing key terms of mobile ions act as	[1]
	(0)	(1)	charge carriers to enable	acias	charge carriers Students state free	[']
					electrons which is reserved for metals.	
		(ii)	Heating A till it melts / A is	in	Students state electrolysis and	[1]
		()	molten state.		electroplating it as a method.	[.]
			[Total: 5	marks		
2	(a)	Differe	ent solubilities of compone	ents d	Many students wrote solubility as a one-	[1]
		solven		\	word response. Failing to state solubility of	
				$\langle \rangle$	the dyes.	
	(b)	Contains blue, purple and orange			Most who got wrong failed to indicate blue	[1]
	()	Containe Mae, purple and orange			as well as they felt it wasn't perfectly in line.	[.]
	(C)	Graph	ite/Carbon in the peneil is in	solubl	Students failed to answer question of why	[1]
		in the	solvent and would not aff	fect th	pencil was used by only stating why ink is	
		results		(n)	not used. Some used 'lead' as a term to	
					explain about the carbon from pencil.	
	$\langle \rangle$		Total: 3	Marks	1	
3	(a)		XXX		NALEA and a set of all been to draw the	
		$\langle \langle \rangle$			Most could not recall now to draw the	
		$\backslash \rangle$	Br 1		Logond stated only as hydrogon/bromino	
		~			Legend stated only as hydrogen/brohime	[2]
			K X V			

	(b)				
		(i)	H⁺	Students wrote equations of HBr or H ⁻ .	[1]
		(ii)	Colourless solutions starts to turn	Students described the displacement	[1]
			reddish - brown	reaction itself rather than colour	
				observations. Some stated yellow instead	
				of reddish brown.	
		(iii)	$C_{1}(\alpha) + 2P_{2}(\alpha\alpha)$	Very peerly done 98% could not do this	[0]
		(11)	$Cl_2(g) + 2Br(aq) \rightarrow 2Cl(aq) + Br_2(aq)$	question and could not balance equation	[2]
				Need to revisit this topic.	
			[1] – correct chemical		
			formula/ions		
			[1] – correct state symbols (2 nd mark is only awarded if the		
			1 st mark is given)		
				ててて	
				[Total: 6 marks]	
4	(a)	Substa	ance reduced: ZnO has been	substance reduced: most incorrectly state	
		reduce	ed [1]	as just ∠n.	[2]
		form 7	on: ZnO has lost an oxygen atom to	Reason: students are able to explain the	[-]
		decrea	r_{11} oxidation number of 21 mas	reduced However, their phrasing is wrong	
		ueciea		using oxygen has been reduced from zinc	
			\square	oxide.	
				17	
	(b)	(i)			
				most students who made mistakes drew	
		1		orderly arranged atoms or did not	
		ſ		enough	
	\wedge			the size of the atoms enough. Labelling	[1]
	$\langle \rangle$			might help.	
)				
		(ii) 🗸	The different sized atoms disrupts	Most fail to get the full marks by either	
			the orderly arrangement [1]	omitting different size disrupts orderly	101
			of pure metal. This makes it	arrangement.	[2]
			narder for the layers to slide over		
			harder		
				[Total: 5 marks]	
5	(a)	(i) N	Mr of CuO = 64 + 16 = 80		
			le of molec of CuC		
		=	=		[1]
		=	= 0.0050 moles		

		(ii)	Mole ratio, CuO:H ₂ is 1:1, hence <u>0.0050 moles of H₂ is</u> <u>required</u>	Students fail to state why the value is same as a(i).	[1]
	(b)	(i)	No. of moles of hydrogen gas used $= \frac{165}{24000}$ $= 0.006875 \text{moles} \qquad [1]$ Mole ratio, CuO:H ₂ is 1:1 0.005 moles of CuO requires only 0.005 moles of H ₂ . However, 0.006875 moles of H ₂ is used. Hence H ₂ is in excess. [1] CuO is the limiting reagent. [1]	Quite a large number of students had not done this part as they forgot to change cm3 to dm3. They also had forgotten the formula. Lastly, they incorrectly associate CuO and H2 mole directly by looking which is more rather than by looking at amount of H2 available vs needed.	[3]
		(ii)	Mr of water vapour = $2 + 16 = 18$ Mole ratio of CuO:H ₂ O is 1.1. <u>Hence 0.005mols of water vapour is</u> <u>formed</u> . [1] Mass of water vapour = $0.005 \times 18 = 0.090$	Quite a fair number of students erroneously used the amount of hydrogen used in a(i). to calculate the number of moles. 1m was given for method mark.	[2]
	$\langle \rangle$			[Total: 7 marks]	
6	(a)	Tru cha <u>fron</u> met	e; In the same Reriod, <u>metallic</u> racter of elements decreases n left to right of PD so W is more allie than Z.	Most students were able to do this question. However the explanation needs improvement as they only say the Z is a halogen rather than showing less character of a metal.	[1]
_	(b)	Tru <u>eler</u> V is	e; <u>On moving down Group I</u> ments, the reactivity increases so less reactive than W.	Most students could do this well.	[1]
	(c)	Fal <u>ele</u> ele a h	se; <u>On moving down Group I</u> <u>ments, the melting point of the</u> <u>ment decreases</u> so V should have igher melting point than W.	Quite a fair number of students had forgotten trends of Grp 1	[1]
	(d)	Fals <u>the</u> <u>ator</u> sho Y.	se, <u>On moving down any group,</u> number of electron shells in the <u>ms of the element increases</u> so X uld have less electron shells than	Almost all students were able to answer this question well.	[1]

		(No mark for reason i incorrect.)	f 'true/false'	is			
						[Total: 4 marks]	
7	(a)	A: barium chloride			A students	s could not identify the acid.	
		B: hydrochloric acid			B students	s could not identify the acid as	
		C: barium sulfate			HCI. Most placed Barium sulfate in this option.		
		D: hydrogen gas			C most left	t this blank	
		E: zinc chloride			• most ici		
		F: silver chloride			D all stude	ents could identify this	
					E some stu but was not a	idents were able to identify this able to work backwards.	[6]
	(b)	$(24\pi N)$ (2π) (2π)		1()	F as above	a who could not do the choice	[2]
	(5)	$ZAGNO_3 (aq) + ZnCl_2 (aq)$ $Zn(NO_3)_2 (aq)$ $BaCl_2 (aq)+ H_2SO_4 (aq)$ 2HCl (aq)	$(aq) \rightarrow ZAGC$	(s) +	could not wri also wrote r reaction canr	te a balanced equation. Some nonsensical response as the not go through.	[2]
		$2HCl (aq) + Zn (s) \rightarrow Z$	$(nCl_2(aq) + l)$	⁴ ₂ (g)		U	
		(\subseteq	\backslash	2 R	[Total: 8 marks]	
8	(a)	name of salt	formula of salt	nam to m	e of acid used ake salt	name of the other compound used to make salt	
	\langle	sodium sulfate	Na ₂ SO ₄	sulf	uric acid	sodium oxide/hydroxide/carbona te	
		potassium phosphate	K₃PO₄	phos	sphoric acid	potassium oxide/ hydroxide/carbonate	
		silver chloride	AgC <i>l</i>	hyd	rochloric	silver nitrate	
		calcium phosphate	Ca ₃ (PO ₄)	phos	sphoric acid	calcium hydroxide	[3]
			Few recalled the charge for phosphori				
		L					
	(b)	The paint and plastic co barrier [1] to	oating acts as	a 	Most students o be used to pre number did n protective layer	could identify why the paint can event rusting but quite a large ot state how it acts as a / barrier from the reactants.	[2]

		Preve from direct	ent / minimize oxyg coming into contac ly [1]	en and water at with iron				
	(c)	Nitroo Sulfu volca	gen dioxide – moto r dioxide – fac nic eruptions	r vehicles ctories / coa	Most correc	tly stated the ga r incorrect respo	ases SO2 but CO nse.	[2]
							[Total: 7 marks]	
	Sect mark	ion B – (s]	- Free Response C	uestions [20				For Examiner's Use
9	(a)	Solut seaw	ion of sodium chloi ater	ride and	Many stated water was o	l swimming pool nly inferred not ı	, tap but the mentioned.	[1]
	(b)	Both They neutro <u>C/-17</u>	have same numbe have different ons, <u>C/-35 has 18</u> has 20 neutrons.	r of protons, 17 number o neutrons whil	 Many stude number in p difference ir calculation neutron was 	nts correctly sta roton but did not n the number of to show how s different.	ted the the same t elaborate on the f neutron through they knew the	[1] [1]
	(c)	(i)			Table 8.1			
			name of ion	number of protons	number of neutrons	number of electrons	electronic structure	
			magnesium ion		12	10 lons mean that there is a difference between proton and electron. Mg loses 2 electrons	8	[2]
			chloride ion			18 Chlorine gains one electron	2,8,8	
	<	(ii)				2+		
			charges [1], elec	ctrons [1]				[2]
			Most failed to dra for magnesium wi	w the proper cl ith 2 electrons.	harges and wro	ngly indicated th	e outermost shell	

	(d)	(i)	Hydrogen and chlorine <u>share a</u> <u>pair of electrons</u> between them.	Most wrongly stated by just stating it has covalent bonds without describing further.	[1]
		(ii)	Magnesium chloride is a solid at room temperature as <u>a large</u> <u>amount of energy</u> is required to overcome the <u>strong electrostatic</u> forces of attraction <u>between</u>	Most students failed to state everything to get full marks. Many confused between structure and bonding. Structure describes how the particles are packed and its movement and	[1]
			oppositely charged ions.	arrangement.	[1]
			temperature as only a small		
			amount of energy is required to		
			overcome the <u>weak intermolecular</u>	\cap	
			forces of attraction <u>between</u>		
			molecules.	[Total : 10 marks]	
10	(a)	(i)	Universal indicator in hydrochloric	Orange and blue are synonymous for weak	[2]
			acid is red while it is purple in	acid and alkalis	
			Reject orange/vellow for		
			hydrochloric acid and blue for		
			sodium hydroxide		
		(ii)	There are more H [*] ions than OH-	Acids have both types of ions only that there	[2]
			There are more OH than Ht ions	The converse is true.	
			in alkaline solutions. [1]	O BU	
	\langle		Add magnesium/sarbonate/øxide in excess to acid [1] Filter the mixture to obtain magnesium as residue and keep	By drawing out the reaction, students can visualise better and not omit the steps.	[4]
		1	the filtrate [1] <u>Heat the filtrate to saturate</u> the solution and <u>allow it to cool</u> to allow crystals to form [1]		
			Dry the crystals between sheets of filter paper [1]		
	(b)	No. c	f moles of NaOH = 0.02x1.5 = 0.03		[2]
		[1] Conc	entration of HCl = 0.03 / 0.0250 [1] = 1.20 mol/dm ³		
				[Total: 10 marks]	
11	(a)	(i)	Experiment 1 has a faster rate of	Steeper gradient indicates a faster rate of	[1]
			reaction than experiment 2. / Experiment 1 took a faster time to complete than experiment 2.	reaction.	
		(ii)	Powdered calcium carbonate has	Most omitted to state which particle was the	
			a <u>larger surface area</u> to volume	smaller one and assumed the reader to	[2]

		ratio / larger total surface area <u>exposed to collisions</u> . [1] Results in <u>higher frequency of</u> <u>effective collisions [1]</u> , thus greater speed of reaction.	know. Many used higher probability instead of frequency.	
	(iii)	$CaCO_3(s) + 2HCl(aq) \rightarrow CaCl_2(aq) + CO_2(g) + H_2O(l)$	Most could not recall reactions between acid and carbonates and the product obtained.	[2]
(b)	b b d m (curry) control of the management of the management (curry) to b the management of the managem	Experiment 3 2 4 6 8 10 Time(sec)	Sizeable number of students failed to label the correct term. Students failed to appreciate the half volume compared to first graph. Students did not follow the reaction speed of the first graph.	[1]
(c)	(i)	Exothermic reactions.	Heat increase is exothermic reaction	[1]
\langle	(ii)	<u>Greater energy is given off when</u> <u>bonds of products are formed [1]</u> then <u>energy taken in from</u> <u>surrounding</u> in <u>breaking bonds [1]</u> of reactants. Hence there is a net increase in temperature.	Students failed to appreciate how bonds of existing compunds need to be broken in order to form new bonds. Breaking of bonds require energy which is taken in (endo) from surroundings. Forming of bonds require the energy to be given out to surroundings (exo). Since final is exo it means that more energy is given off than taken in.	[2]
	(iii)	Using a pH meter.	accurately = use instrument to measure	[1]
			[Total: 10 marks]	

End of Paper

www.KiasuExamPaper.com 132