

CANDIDATE NAME			
CLASS		INDEX NUMBER	
SCIENCE (0 Paper 1	CHEMISTRY)	5076/01	
Setter: Mr Chev Additional Mate	w Cheng Boon erials: OTAS Sheet	Date: 16 May 2019 Duration: 30 minutes	

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, highlighters, glue or correction fluid.

Write your name and index number on the Question Paper and OTAS Sheet in the spaces provided.

There are **twenty** questions on this paper. Answer **all** questions. For each question there are four possible answers **A**, **B**, **C** and **D**.

Choose the **one** you consider correct and record your choice in **soft pencil** on the separate OTAS Sheet.

A copy of the Data Sheet is printed on page 8.
A copy of the Periodic Table is printed on page 10.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer.

Any rough working should be done in this booklet. Electronic calculators can be used in this paper.

The total of the marks for this paper is 20.

Do not open this document till permission is given.

This document consists of **9** printed pages and **1** blank page. PartnerlnLearning

More papers at w.testpapersfree.com

- 1 Which apparatus is most appropriate to measure 25.0 cm³ of a liquid accurately?
 - A beaker
 - B gas syringe
 - C measuring cylinder
 - D pipette
- 2 The diagram shows the first step in separating iron powder from sodium chloride.

What is the next step?

- A evaporate the water
- B filter the mixture
- C freeze the mixture
- D make a chromatogram
- 3 Which statement best describes a mixture?
 - A It boils at 100 °C.
 - B It is a black solid that melts at 45 °C.
 - C It is a yellow liquid which can be separated into three portions by fractional distillation.
 - D It turns black upon heating.

Which setup shown **cannot** be used to collect a sample of gas that is less dense than air and insoluble in water?

5 What is the formula of the compound removed from seawater by evaporation to dryness?

- A CO₂
- B H₂
- C H₂O
- D N₂

6 Which arrangement of electrons in an atom represents a non-metal?

- A 2, 1
- **B** 2, 2
- C 2, 8, 3
- D 2, 8, 4

Refer to the description and table below for questions 7 and 8.

The table shows the volume of oxygen that is collected in a gas syringe at half-minute intervals.

time / minute	0	0.5	1.0	1.5	2.0	2.5	3.0	3.5
volume / cm³	0	16	28	40	50	58	66	66

- 7 When was the reaction complete?
 - A after 0.5 minute
 - B after 1.5 minutes
 - C after 2.0 minutes
 - D after 3.0 minutes
- 8 Which graph of volume against time best shows these results?

volume

- Two miscible liquids are separated using fractional distillation. One of them boils at 145 °C and the other boils at 15 °C. What could be the temperature reading on the thermometer when the first drop of the distillate is collected?
 - A 0°C
 - B 15 °C
 - C 100 °C
 - D 145 °C

10	Wh	ich formula contains the largest number of atoms?
	A	AIPO ₄
	В	Ba(OH) ₂
	C	Ca(NO ₃) ₂
	D	MgCO ₃
11	Wł	nich group contains only one metal?
	A	carbon, hydrogen, lithium
	В	copper, magnesium, zinc
	C	oxygen, nitrogen, sulfur
	D	silver, mercury, chlorine
12		the first twenty elements listed in the Periodic Table, how many of them are poor conductors of ectricity?
	Α	5
	В	10
	C	12
	D	15
13	ìn	which substance are the particles furthest apart?
	A	ice at 0 °C
	В	ethanol at 30 °C
	C	oxygen at – 300 °C
	D	steam at 100 °C

14	ln '	which change of state is heat energy taken in and a large change in volume is observed?
	A	boiling
	В	condensation
	C	freezing
	D	melting
15	Etl	nanol melts at -117 °C and boils at 78 °C. At which temperature is ethanol a liquid?
	A	- 140 °C
	В	- 110 °C
	C	80 °C
	D	150 °C
16		nen y cm³ of water and y cm³ of ethanol are mixed, the total volume is less than 2 y cm³. This is cause
	A	the total mass is greater and pushes the molecules together.
	В	the water molecules evaporate away.
	C	the water molecules fit into spaces between the ethanol molecules.
	D	the water molecules react with the ethanol molecules.
17	WI	nich pair of elements is not likely to form an ionic compound?
	A	calcium and oxygen
	В	copper and chlorine
	C	nitrogen and hydrogen
	D	potassium and bromine

18	An atom is represented by the symbol	²⁰⁴ Q.	What does the	nucleus of this	atom contain?
----	--------------------------------------	-------------------	---------------	-----------------	---------------

- A 81 neutrons and 123 protons
- B 81 neutrons and 204 protons
- C 81 protons and 123 neutrons
- D 81 protons and 204 neutrons

19

property	symbol
exists as a gas under room condition	X
has 2 valence electrons	Y

Using the Periodic Table and the information given in the table above, what are X and Y most likely to be?

	X	Y
A	CI	Mg
В	Li	Са
С	Ne	0
D	0	S

- 20 An element with proton number 7 will have similar chemical properties with an element with proton number
 - A 5
 - **B** 8
 - C 15
 - D 17

- End of Paper -

DATA SHEET Colours of some common metal hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc(II) hydroxide	white

9

BLANK

The Periodic Table of Elements

	6 🕯	6 % 5 6	a 4 I a	ه اً د	4 0 5 X	⊑ § .	:
Ц		\$ 2 js		ωχ ξ α	o×15		:
ΕX	Annual Agents of the State of t	or § 5	45.5 45.5	84 8	8 + \$ [3	8≤[:
5		∞0	S o ∰ Si	24 26 70 70	S2 Te befarlom 128	3 ℃ 1	1 18 CV III
>		~~{}#	7 P 15	88 75 75	51 SD 122	89 8	
Σ		₩ ∪\$2	# 70 82	32 Ge genmentum 73	05 118 05 119	2 1 2	United the second secon
Ħ		o m 🖁 I	15 A1 allominitum 27	ភ ូវី ៩	6 문 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	17. 17. 204	
				នុស្សន	\$8 ‡	8 2 [8	-112 C-1 copenities
				8 ∂ } 8	¢ 8 1 8	5 <u>5 4</u> 9	5 8 \$ (
				8 2 ₹8	4 도 1 호	5 T 2	28 .
5		v.		ងខ្មីន	ងឱ្ឌនិ	K = 18	8 5
	-# } -		÷	7218	45 j 5	8 8 B	8 #
			: : ::	શ ≨ &	5 4 -	r 2] 2	Sa j ı
	-4-2			នុស្សីន	22 5 8	43	28
	3	profon (stomio) number atomic symbol name ratelive atomic mass	· · · · · · · · · · · · · · · · · · ·	N> ∰6	72 8	22 6	98 4
	-			8 = { 3	ទុស្ស៊ីគ	ræje	BE !
		S. same agent size of the same	dita and a second	28 8	8× [8		2.4 - 4 8 •
		+ 8 1 5	22	នខឺ្ខំ	80 8	1	
		1 . E	= 2 {n	1	ន ខ្ពុំទីន	88 8	8 IZ 1

73	8 I I
S S T	2 2 g
8 E 1 8	101 NAC
80 \$ \$	Fin Fin
₽₹ §	8 II
82 [8	30 1
នក្ខិន	SK!
28 g	8 E 🚦 1
89 8	# § ¶ ı
88 3	3 Z 🖣 1
• [3.5	S State
89 1	8 7 ⊃ § 8
86 3	2 E S
#8 { \$	8£ [8
A La	85 1

The volume of one mole of any gas is 24 dm at room temperature and pressure (rt.p.).

CANDIDATE NAME	
CLASS	INDEX NUMBER
SCIENCE (CHEMISTRY)	5076/03
Paper 3	Date: 07 May 2019
Setter: Mr Chew Cheng Boon No Additional Materials are required.	Duration: 1 hour 15 minutes

READ THESE INSTRUCTIONS FIRST

Write your name, class and index number on all the work you hand in. Write in dark blue or black pen.

You may use pencil for any diagrams, graphs, tables or rough working. Do not use staples, paper clips, highlighters, glue or correction fluid.

Section A and B

Answer all questions in the spaces provided

The number of marks is given in brackets [] at the end of each question or part question. In calculations, you should show all steps in your working, giving your answer at each stage. A copy of the Periodic Table is attached on page 12.

The use of an approved scientific calculator is expected, where appropriate.

For Examiner's Use				
Paper 1	20			
Paper 3 Section A	45			
Paper 3 Section B	20			
Total	85			

Do not open this document till permission is given.

This document consist PartnerInLearning apages and 0 blank

pages.

More papers at www.testpapersfree.com

For Examiner's Use

Section A [45 marks]

Answer all questions in the spaces provided.

1	The	list shows five common separation techniques.	
	•	crystallisation simple distillation evaporation to dryness fractional distillation filtration	
	Cho	ose from the list, the most suitable technique for the following separation.	
	(a)	Obtaining pure water from a cup of coffee.	
			[1]
	(b)	Obtaining sugar from sugar solution.	
			[1
	(c)	Removing dust particles from air.	
			[1
	(d)	Obtaining kerosene from a mixture of kerosene and petrol.	
			[1]
	(e)	Obtaining salt from sea water.	

[Total : 5]

[1]

2 Table 2.1 lists the number of protons, neutrons and electrons in six different atoms, A to F.

For Examiner's Use

Table 2.1

atom	number of protons	number of neutrons	number of electrons
A	6	6	6
В	3	4	3
С	12	14	12
D	12	12	12
E .	18	22	18
F	20	20	20

Use	the information in Table 2.1 to answer the following questions.	
(a)	Which atom has a nucleon number of 12?	[1]
(b)	Which atoms are isotopes of the same element?	
	and	[1]
(c)	State the electronic configuration of F.	[1]
(d)	Which atom has a stable octet configuration?	[1]
(e)	Which atom has the least number of valence electron(s)?	[1]
(f)	Which atom forms an ion with a single positive charge?	[1]
(g)	Can D conduct electricity? Give a brief explanation for your answer.	
		[2
	[Tota	l: 8

3 (a) Table 3.1 shows three substances.
Classify them as element, compound or mixture, and name the elements found in the substance.

For Examiner's Use

Table 3.1

substance	classification (element, compound or mixture)	elements found in this substance
carbon dioxide		
air		
rust		

[6]

- (b) Information about four substances W, X, Y and Z is given below.
 - W: A white solid formed by strongly heating magnesium in oxygen.
 - X: A gas used by living things during respiration.
 - Y: A solid with non-uniform distribution of black and yellow colouration.

 The black particles are attracted by a magnet but not the white particles.
 - **Z**: A solid with constant composition and produces two elements when heated strongly.

Classifing each of **W**, **X**, **Y** and **Z** as an element or a compound or a mixture by placing a tick in the appropriate column in Table 3.2.

Table 3.2

	element	compound	mixture
w			
x			
Y			
Z			

[4]

[Total: 10]

4 (a) Complete Table 4.1 concerning the three different sub-atomic particles present in atoms.

For Examiner's Use

Table 4.1

	relative mass	relative charge
proton		
electron		
neutron		

[3]

(b) Fig 4.2 shows the structure of an atom of element W.

Fig. 4.2

(1)	Osing the Periodic Table as a guide, hathe the clement W.	
		[1]
(ii)	Using the Periodic Table, name another element that has similar chemical properties as the element W . Explain your answer.	
		[2]
(iii)	Write the formula of the compound formed when element ${\bf W}$ combines with oxygen.	
		[1]
	п	Fotal∙ 71

Fig. 5.1 is used to separate a mixture of sea water.

(a)	What are the two main physical processes that occur during the separation?	
	and	[2]
(b)	Why are boiling stones added to B?	
		[1]
(c)	State the purpose of the water in apparatus C.	
		[1]
(d)	Sketch a diagram in the box below to show how the particles are arranged at point A.	
		[1]
(e)	Two samples are taken, one from point B and another from point D . Each is placed in a separate evaporating dish and heated to dryness. What would you observe on each of the two evaporating dishes at the end of the heating? Give a brief explanation on the difference in the observation.	
	······································	
	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		[2]
	[Tota	: 7]

PartnerInLearning

For Examiner's Use

The red colouring matter in a fizzy drink was extracted by a solvent. Two drops of the red solution were placed at the centre of a circular filter paper and allowed to dry.

Drops of pure solvent were slowly added to the centre of the filter paper. After some time, four coloured circles were seen, as shown in the Fig. 6.1.

Fig. 6.1

(i)	Name the separation technique described above.	
	***************************************	[1]
(ii)	Name an apparatus that can be used to drop the solvent onto the filter paper.	
		[1]
(iii)	How many different dyes are there in the fizzy drink?	
		[1]

(b) An alternative setup for this experiment is shown in Fig. 6.2. In this case, a strip of filter paper was used and the filter paper was dipped into the same solvent.

For Examiner's Use

Fig. 6.2

Draw and label on Fig. 6.2 to show the results you would expect if the set up was left until the solvent reached nearly to the top of the filter paper. [2]

In preparing the chromatography, the following instructions were given. Suggest a reason for each instruction.

(i) The starting line should be drawn with a pencil rather than with ink.

[1]

(ii) At the end of the experiment, the solvent front should be near the top of paper.

[1]

State one advantage of using chromatography over other techniques in separating mixtures.

[1]

Section B [20 marks]

For Examiner's Use

Answer all questions in the spaces provided.

1 A solid M was heated until it completely melted and turned to a gas. It was then allowed to cool slowly.

The graph shows how the temperature of M changed as it cooled.

Turn Over

(e)	Explain why there is no change in temperature during the period DE.	For Examiner's Use
	[2]	
(f)	Suggest a reason why substance M cannot be water.	
	[1]	
	[Total: 10]	

PartnerinLearning

[Turn Over

Aluminium fluoride, AIF ₃ is a solid compound that has a melting point of 1291 °C.						
(a)	Name	the type of bonding present in aluminium fluoride, AIF ₃ .				
			[1]			
(b)	Using Your	a 'dot and cross' diagram, show the electronic structure of aluminium fluoride. diagram should show the arrangement of all the electrons.				
			[2]			
(c)	Expla	in why the bonding in aluminium fluoride gives rise to the following properties.				
	(i)	A very high melting point.				

			[2]			
	(ii)	High electrical conductivity when molten, but not when in the solid state.				
			i			
			[3]			
(d)	Sugg	est a solvent in which aluminium fluoride is soluble in.				
` '			[1]			
(e)	Name	e another element that undergoes the same type of bonding when combining sluminium.				
			[1]			
		[Tota	i: 10]			

[Turn Over

The Periodic Table of Elements

0	N품[4	្ទ ខ ្ទឹង	e 4 [s	% &	- A	J &	£ 50	8 &	S 1		
III	STARS .	o L 💆	040 C 1 4	8 6	18	G	127	8₹	astadha	: :	
5		«ο ξ ε	က နိုင္ငံ	# #		8 P	tellurium 128	3 &	potonium	176 Vennodem	Ť
S		~~ § ¥	**				*44		1971		
2		∞ ⊘ 🖟 🗅	≠ø[8	8 8	germantura 73	S. S.	s e	3 &	¥28	47 T. Margar	J.
=		• 0] E	2 Z P	ත් ලී	I R	9 LI	115	& F	Pallium 204		
				នុស្	13	#3	E CATA	8 £	Ŕ	172 Coperation	Í
			:	នាថ	łz	∓ ₹	18	8 3	16	T. D. Contraction	1
			٠.	8 ₹	18	\$ Z	\$ 90°	æ å	1 S	우리	ļ
		<u>(</u> ,,		2 8		\$ £	188 188 188	1 2 *	. <u></u> 8	8 % 1	ŧ
	- II }-		:	8 £	E 8	₹ 2	<u> </u>	9,2		٤ŧ	į
		<u> </u>	# 2 1. 5	8 5	13	#3 7	Hedbardson.	24	2 2	(07 Per 1	ř
				ಷ ೬	densiran 52	2 €	molyhdanum 96	* 3	100	88	Ϊ
	Ē	profon (alomio) numbo atomic symbol man relative atomic mass		87.3	wantardiam.	₹2	English (S	27 2		8 8	Í
				Ø F		84	# E	23		#	ĵ
			: : : : : : : : : : : : : : : : : : :	N &	45	æ≻		57 - 71 Instituted		89 - 103 adhoise	
		+8\$0	2 3 4	2 8	1	8 is	atrontillan 88	8	a į d	82	į
		ø⊐ å r	∓ 2	1		6 ₽	rubjetum 885	8 8	3 12	3 L	

94 55 98 97 60 60 60 60 60 60 60 60 60 60 60 60 60	#55#
62 63 6 Sm Eu 6 1 mm/m europhm promo 150 152 1	& A.S.
L	91 82 83 Pa U Np compan userian replumum 231 238 -
\$ 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	8 C 28

actinoids

The volume of one mole of any gas is 24 dm at room temperature and pressure (r.t.p.).

С

Fajar Secondary School 2019 Mid-Year Exams Secondary 3E1

C

D

Paper 1 [20 marks]

Q1	Q2	Q3	Q4	Q 5	Q6	Q7	Q8	Q9	Q 10
D	В	С	Α	С	D	D	D	В	С
Q11	Q12	Q13	Q14	Q15	Q16	Q17	Q18	Q19	Q20

В

С

С

C

Paper 2 Section A [45 marks]

Question No	Answer	Marks allocation	
1 (a)	simple distillation	1	
(b)	crystallisation	1	
(c)	filtration	11	
(d)	fractional distillation	11	
(e)	evaporation to dryness	1	
		Total: 5 marks	
2 (a)	A	1	
(b)	C and D	1	
(c)	2. 8. 8. 2	1	
(d)	E	11	
(e)	В	11	
(f)	В	1	
(g)	Yes,	1	
(3)	It has 2 valence electrons and is	1	
	therefore a metal. Metals conduct		
	electricity or		
	Magnesium has proton number 12 which is a metal		
		Total: 8 marks	

PartnerinLearning

3 (a)	Carbon dioxide	compound	carbon, oxygen	award 1 mark for each correct answer.
	Air	<u>mixture</u>	nitrogen, rare gases, oxygen	
	rust	compound	iron, oxygen	
				Total: 6 marks
				Total. Ulliarks
(b)		W	compound	Award 1 mark for each correct
		X Y	element mixture	answer
		Z	compound	
				Total: 4 marks
4 (a)	proton	1	+1	1 mark for each correct row of
- \-/	electro			answers
	Neutro	n 1	0	
				Total: 3 marks
(b) (i)	beryllium			
(ii)		ent in Group	Il except Be	1
	It has the	same numbe	er of valence	1
	electrons			
(iii)	WO		··· ·	1
				Total: 4 marks
				Totas. 4 marks
5 (a)	condensation and evaporation			2
(b)	to make the boiling smooth			1
(c)	To condense the incoming hot vapour into a liquid.			1
(d)				
		$\overline{}$		1
			、	
			'	
		0		
(e)		Evaporating dish from point B contain		
	residue as sea water contains dissolved		1	
	salt.	ting dish from	noint D doos not	
	Evaporating dish from point D does not contain any residue as distilled water is chemically pure / free from any			
		substances.		1
				Total : 7 marks

6 (a) (i)	paper chromatography	1
(ii)	plastic dropper	<u> </u>
(iii)	4	1
		Total : 3 marks
6 (b)	red yellow red	Award 1 mark for any 2 correc answers.
	orange	[2]
(i)	The graphite in pencil lead is insoluble in the solvent.	1
(ii)	To ensure good separation of all the dyes.	1
(iii)	Fast/need only small amount of sample/ no heat is involved.	1
		Total : 5 marks

Section B: [20 marks]

1 (a)	Melting point = 45 °C	1
	Boiling point = 74 °C	1
(b)	At A, particles are far apart without any orderly arrangement. At E, particles are closely packed in orderly arrangement	1
	At A, particles move randomly at great speeds. At E, the particles vibrate about a fixed position	1
(c)	M is a pure substance as it has a sharp and fixed mp and bp.	1
(d)	Gas and liquid states	1
(e)	Energy is used to bring the particles closely packed together instead of	1
	giving out to surrounding.	1
(f)	Bp and mp are not 100 °C and 0 °C respectively	1
		Total : 10 marks

2(a)	lonic bonding	1
	lonic bonding	1
(b)	Correct aluminium ion with 3+ positive charge	100 000
	AI 3+	
	Correct 3 fluoride ions with 1- negative charge	
3	F X	1
(c) (i)	Strong electrostatic force of attraction between oppositely charged ions:\ A lot of energy is receded to overcome	1
	this strong force.	1
(ii)	In molten state, oppositely charged ions are mobile	1
	They serve as charge carrier to conduct electricity.	1
	In solid state, the ions are fixed in rigid structure and they are not free to move.	1
(d)	Water	1
(e)	Any non-metallic element except Group IV or Group 0 elements.	1
		Total: 10 marks
L		- 44011 IA IIIRIAA