	Class	Register No.
Candidate Name		
· · · · · · · · · · · · · · · · · · ·		

PEIRCE SECONDARY SCHOOL **MID YEAR EXAMINATION 2019** SECONDARY THREE EXPRESS

SCIENCE (CHEMISTRY) Paper 1 (Multiple Choice)

5076/01, 5078/01 15 May 2019

Additional Materials: Multiple Choice Answer Sheet

READ THESE INSTRUCTIONS FIRST

Write in soft pencil.

Do not use staples, paper clips, glue or correction fluid.

Write your name, class and register number on the Answer Sheet in the spaces provided unless this has been done for you.

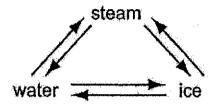
There are twenty questions on this paper. Answer all questions. For each question there are four possible answers A, B, C and D.

Choose the one you consider correct and record your choice in soft pencil on the separate Answer Sheet.

Read the instructions on the Answer Sheet very carefully.

Each correct answer will score one mark. A mark will not be deducted for a wrong answer. Any rough working should be done in this booklet.

A copy of the Data Sheet is printed on page 9.


A copy of the Periodic Table is printed on page 10.

The use of an approved scientific calculator is expected, where appropriate.

PARENT'S SIGNATURE	For Examiner's Use
	Total

This paper consists of 9 printed pages and 1 blank page. Setter: Mr Tan Kok Heong

- 1 Which of the statements about the behaviour of the particles in a gas is **not** correct?
 - A They move in random directions.
 - B They are arranged in an orderly pattern.
 - C They are spaced far apart from one another.
 - **D** They spread throughout the vessel in which they are contained.
- 2 In which conversion do water molecules gain speed?

- A ice → steam
- B steam → ice
- C steam → water
- D water → ice
- 3 Three substances have the following properties:

substance 1 is brittle;

substance 2 melts at 8 °C and boils at 180 °C;

substance 3 has a high melting point of 800 °C.

What is the state of each substance at room temperature and pressure?

	substance 1	substance 2	substance 3
Α	gas	liquid	solid
В	solid	gas	solid
С	solid	liquid	solid
D	solid	gas	gas

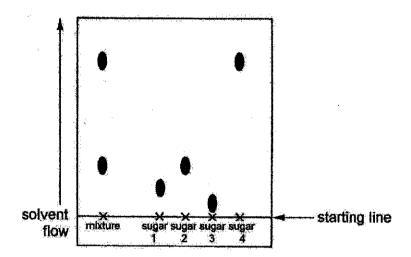
4 The table below lists the properties of oxygen and carbon dioxide.

name of gas	density	solubility of gas
oxygen	slightly denser than air	very slightly soluble
carbon dioxide	denser than air	slightly soluble

Which is the best method to collect each gas?

	oxygen	carbon dioxide
Α	displacement of water	downward delivery
В	displacement of water	upward delivery
C	upward delivery	displacement of water
D	upward delivery	downward delivery

5 Which piece of apparatus is most suitable for accurately measuring out 23.45 cm³ of water?



- 6 What is the S.I. unit for measuring volume of a liquid?
 - A mm³
 - B cm³
 - \mathbf{C} dm³
 - $D m^3$
- 7 Copper(II) sulfate crystals can be separated from sand by using the processes shown.

What is the correct order for the processes?

	first			last
Α	filter	dissolve	evaporate	crystallise
В	dissolve	evaporate	crystallise	filter
С	dissolve	evaporate	filter	crystallise
D	dissolve	filter	evaporate	crystallise

8 A mixture of two sugars was compared with four different sugars using chromatography. The results are shown in the diagram.

Which two sugars does this mixture contain?

- A 1 and 2
- B 1 and 4
- C 2 and 3
- D 2 and 4

- 9 Which statement about pure sodium chloride, NaCl, is correct?
 - A It boils over a range of temperatures.
 - B It decomposes into sodium and chlorine upon heating.
 - C It melts at a fixed temperature.
 - D It is insoluble in water.
- 10 What is the total number of elements present in one unit of chromium(III) picolinate, Cr(C₆H₄NO₂)₃?
 - **A** 5
 - **B** 6
 - C 17
 - **D** 40
- 11 Which list contains an element, a compound and a mixture?
 - A Air, carbon dioxide, carbon monoxide
 - B Air, distilled water, iron filings
 - C Distilled water, magnesium ribbon, oxygen gas
 - D Tap water, iron filings, magnesium ribbon
- 12 Which statement about the particles ${}_{9}^{19}F^{-}$, ${}_{10}^{20}Ne$ and ${}_{11}^{23}Na^{+}$ is correct?
 - A They all contain more electrons than protons.
 - B They all contain more neutrons than protons.
 - C They all contain the same number of electrons.
 - D They all contain the same number of protons.
- 13 A particle has 10 electrons, 7 protons and 8 neutrons.

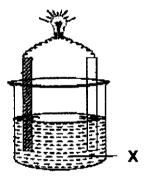
What is the symbol for the particle?

- A N3-
- B 02-
- C F
- D Ne

14 The atoms of element X have the electronic configuration 2, 8, 6.

Which statement about element X is correct?

- A It forms an ionic compound with sodium.
- B It forms an ion of charge 2+.
- C It has 6 protons in the outer shell of an atom.
- **D** It only reacts with non-metals.
- 15 Which statement about isotopes of the same element is correct?
 - A They have different atomic numbers.
 - B They have different chemical reactivities.
 - C They have different nucleon numbers.
 - D They have different numbers of electrons.
- 16 Which statement describes the formation of a fluoride ion from a fluorine atom?
 - A The atom gains one electron.
 - B The atom gains two electrons.
 - C The atom loses one electron.
 - D The atom loses two electrons.
- 17 What is the correct formula of ammonium sulfate?
 - A NH₃SO₄
 - B NH4(SO₄)₂
 - C (NH₃)₂SO₄
 - D (NH₄)₂SO₄


18 The elements X and Y form the compound X2Y.

What is the correct electronic configuration of the atoms X and Y?

	electronic configuration						
	atom of X atom of Y						
Α	2, 1	2, 7					
В	2, 2	2, 7					
С	2, 1	2, 6					
D	2, 2	2, 6					

- 19 Which two elements combine to form an ionic compound?
 - A carbon and oxygen
 - B calcium and fluorine
 - C hydrogen and fluorine
 - D nitrogen and oxygen
- 20 The diagram below shows an experimental setup. In this experiment, the lamp lights up once water is added to substance **X**.

Which is most likely to be the identity of substance X?

- A kerosene
- B sodium chloride
- C sugar
- D sulfur

BLANK PAGE

PartnerInLearning

More papers at www.testpapersfree.com

DATA SHEET

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

	0	4 중	₽ ₽	<u>រ</u> ិទ្ធិន	18	¥	4	83	2		¥.	2 5	131	8	Æ	uope.			
	=	·		- Morros 19				<u> </u>					-						
	>			16 mg/gen	L									-		- 	116		T.
	>			- <u>8</u> 4	m		<u>\$</u>				,,,,,				•			.	
	2	·) 6 24	<u> </u>		EA.					>.7	•		.,,	4		erovice erovice	ï
	Ш			- § =	┢		F	:	1	(28	_			├-			├-	- 1942	
		; ,			!			ន	5	£ 26 26	8	3	7.5	8	丑	201 y	112	C) operaticium	Ŧ
								53	ಶ	ž z	14	8 j	8	78	₹	196 197	111	Rg oentpenum	1
an								28	Z	800	9	D 1	18	7.8	T	platinum 195	Q1+	Part of the second	ì
Group								27	္ပ	20 g	5	Z	60	77	-	192 192	108	Metherium	
		- T. Mydfrogen						92	•	E 18	4	2	101	28	ő	190 190	108	光	ı
												2		75	8	menlum 186	107	6	1
			umber					20	ō		42	2€	98	74	3	tungatien 184	106	SS dealers market	1
		Xey.	proton (atomic) number	atomic symbol name relative atomic mass	or other control of the control of t			23	>	E 15	4	2	8	73	, co	taritalum 18:1	1		1
			proton		The second secon			R	F	## # # # #	9	4	16 6	72	Ť	mathium 178	\$	Runestocken	
						نية سنينين		72	တ	# C	88	-	8	57-71	land rancids		89-103		
	===		₩.		12	Σ	megneshm 24	20		3		ίπ		56	ea	Darlum 137	88	87.8 Page	f
			ଜ:		¥	2	sodkm 23	61	¥	29 B	37	2	285 250	22	Š	caesium 133	8	T Transfer	

1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	lawrencium
5 de 10 de 1	D Section 1
8,E 1,8 53	Tendiform Full of the
8 m 4 6 8 1	
28 (65 18 년 18 (65 18 년	
8 2 5 6 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	
25 T T T T T T T T T T T T T T T T T T T	K Table
28 § 28;	5 🖥 1
នៗខ្ញុំដូន:	
9 2 g 2 4	1 mg 1
2 E fa . 3	National I
8 3 2 2 3 :	238 E
84 3 %	Poplacing T. 23.1
8 9 § 3 81	= [8
12 Tan 12 S	S E
lanthanoids actinoids	

The volume of one mole of any gas is 24 dm3 at room temperature and pressure (r.t.p.).

Class	Register No.

SECONDARY THREE EXPRESS

SCIENCE (CHEMISTRY) Paper 3

5076/03, 5078/03 7 May 2019

Candidates answer on the Question Paper. No Additional Materials are required.

READ THESE INSTRUCTIONS FIRST

Write your name, class and register number. You may use an HB pencil for any diagrams, graphs, tables or rough working. Write in dark blue or black pen. Do not use staples, paper clips, glue or correction fluid.

The use of an approved scientific calculator is expected, where appropriate. You may lose marks if you do not show your working or if you do not use appropriate units.

Section A

Answer all questions.

Write your answers in the spaces provided on the question paper.

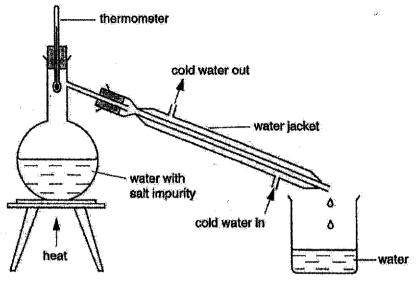
Section B

Answer any two questions.

Write your answers in the spaces provided on the question paper.

A copy of the Data Sheet is printed on page 17. A copy of the Periodic Table is printed on page 18.

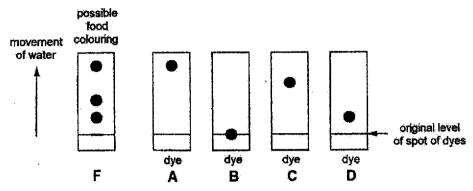
At the end of the examination, fasten all your work securely together.


The number of marks is given in brackets [] at the end of each question or part question.

PARENT'S SIGNATURE	For Examiner's Use
	Section A
	Section B
	Total

Section A [45 marks]

Answer all the questions in the spaces provided.


1 A sample of water contains salt as an impurity. The apparatus shown below is used to produce pure water from the sample.

(a)	(i)	Name the method of purification.	
	(ii)	Suggest the purpose of the water jacket.	_ [1]
	(11)	Suggest the pulpose of the water jacket.	_ [1]
(b)	Wha	at would be the reading on the thermometer during the purification?	
(c)		w a cross (*) on the diagram where the salt would be left after fication is complete.	[1] _ [1]

[1]

2 F is a mixture of dyes. It has been suggested that F might be used as a food colouring. Paper chromatography was used to identify the dyes in F. The resulting chromatograms are shown below. Dyes A and C have a bad effect on some people.

(a)	Which of the dyes A, B, C and D are present in F?	[1]
(b)	Suggest which of the dyes is insoluble in water.	` -
(c)	Suggest why the mixture F should not be used as a food colouring.	_ [1]
		[1]
(d)	Dye B contains two components. Suggest how you could change this chromatographic technique so as to separate these components.	

•		
٠.		
)	a gas is easier to compress than a solid;	
)	a liquid takes the shape of its container but a solid does not.	
,		

4 Use the data in the table to answer the questions that follows.

chemical name	melting point/°C	boiling point/°C	chemical formula
ethanol	-114	78	C ₂ H ₅ OH
hydrogen	-259	-253	H ₂
hydrogen chloride	-114	-85	HC/
iodine	114	183	2
oxygen	-219	-183	O ₂

(a)	Whi	ch chemical	is a liquid at a ten	nperature of 20 °	C?	[1]
(b)		ch chemical	is a solid at a tem 150 °C?	perature of 20 °	C and a liquid at a	L·J
(c)	Whi	ch chemical	is a compound co	ontaining only two	o elements?	[1]
(d)	(i)	Which che	mical is a gas at a	temperature of	-200 °C?	[1]
	(ii)		- D best represer ou have named in		of a molecule of the	[1] e
		A	В	C	D	
		\bigcirc	\bigcirc — \bigcirc	\bigcirc	\bigcirc	
						[1]

Cor	nsider the to	ollowing II	St of comr	non sub	stances.			
	air	salt	brass	sugar	copper wire	water	sea water	
Cho	oose from th	his list a s	ubstance	which				
(a)	is a mixtur	e contain	ing both e	lements	and compou	nds,		
								[1]
(b)	is a mixtur	e of comp	oounds,					
								[1]
(c)	is a mixtur	re of elem	ents,					
			1-0-3-1-mA					[1]
(d)	is a compo	ound cont	aining onl	y two el	ements,			
	-							[1]
(e)	is a compo	ound which	ch contain	s carbo	٦.			
/E\	in an al				1 - 24			[1]
(f)	is an elem	ent that c	an condu	ct electr	icity.			e.4=
						····		[1]

6

		-
) Th	his diagram represents the nucleus in an atom of $\frac{1}{6}$	⁴ C.
Na	ame the particles represent by:	
•		
) Ho	ow many electrons surround the nucleus of an ator	m of ¹⁴ C?

[1]

7 (a) Complete the table

ion	formula	number of protons	number of neutrons	number of electrons
potassium	³⁹ K ⁺			
oxide	¹⁶ O ² -			

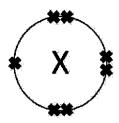
[3]

(b)	In a sample of 100 atoms of potassium, there are 94 atoms of 39K	and
	6 atoms of ⁴¹ K.	

(i)	Explain why these two forms of potassium are isotopes.							
		-11						

(ii) Find the total mass of the 100 atoms of potassium. Hence find the average relative mass of one atom.

[2]


8 The table shows the atomic structure of six particles, represented by the letters L to Q. The particles are atoms or ions. The letters are **not** the symbols of the elements.

particle	electrons	protons	neutrons
L	2	2	2
М	6	6	6
N	12	12	12
0	10	12	12
P	6	6	8
Q	10	13	14

Use the letters ${\bf L}$ to ${\bf Q}$ to answer the following questions.

(a)	Which two particles are ions?	
	and	[1]
(b)	Which particle is an atom of a noble gas?	
(-)	Which partials is an atom with a purleon number of 242	[1]
(C)	Which particle is an atom with a nucleon number of 24?	[1]
(d)	Which two particles are an atom and an ion of the same element?	
	and	[1]
(e)	Which two particles are isotopes of the same element?	
	and	[1]
(f)	Which particle has the highest atomic mass?	
		[1]

9 The diagram below shows the valence shell electrons of an atom of element X.

(a)	Wha	at does the term "valence shell" mean?	F41
(b)	Tov	which group of the Periodic Table does X belong to?	_ [1]
(c)	(i)	Predict the type of bonding present in the compound of X with sodiu	
	(ii)	Draw a 'dot and cross' diagram to show the bonding between X and sodium. Your diagram should show valence shell only.	_ [1] i
	(iii)	Write the formula for the compound of element X with sodium.	[2]
			_ [1]

Section B [20 marks]

Answer any two questions from this section in the spaces provided.

10	(a)		ne the pieces of apparatus best used to carry out the following cedures.	
		(i)	Add 180 cm ³ of sugar solution to a beaker,	
				[1]
		(ii)	Collect and measure the volume of more dense gas such as chloring	
				[1]
		(iii)	Measure 5.50 g of copper(II) oxide powder,	
				[1]
		(iv)	Measure the boiling point of a ethanol,	
				[1]
		(v)	Add 18.90 cm ³ of acid to a conical flask.	
				[4]

(b) Instructions for preparing hydrated crystals of copper(II) sulfate are given below.

Add excess of copper(II) oxide to 50 cm³ of dilute sulfuric acid. Stir until copper(II) oxide no longer dissolves in the acid. Filter the mixture. Evaporate the filtrate to about one-third its volume. Allow the filtrate to cool. Filter off the crystals. Wash with cold distilled water. Dry them on filter paper. Do not heat the crystals.

Explain the importance on why the five <u>underlined</u> instructions had to be carried out.

i)	Add excess of copper(II) oxide,	
		[1]
i)	Filter the mixture,	
		[1]
i)	Evaporate the filtrate to about one-third its volume,	
		[1]
)	Allow the filtrate to cool,	
		[1]
)	Do not heat the crystals.	
		[11]

_____[1]

11	(a)		reaction, magnesium reacts with iron(III) chloride solution to form gnesium chloride solution and iron.	
		(i)	Write the chemical formula for the following solution:	
			iron(III) chloride	[1]
			magnesium chloride	[1]
		(ii)	State the type of bonding present in magnesium chloride.	
				[1]
		(iii)	Describe how the purity of the magnesium chloride can be confirmed	d.

(b) The table below shows properties of different gases at room temperature and pressure. Use the information below to answer the following questions.

name of gas	density (g/dm³)	solubility in water
helium	0.179	insoluble
ammonia	0.681	soluble
bromine vapour	7.14	soluble

Density of air = 1.28 g/dm³

(i)	Sketch the apparatus that you would use to obtain helium from a
	mixture of helium and ammonia. Explain your choice.

 · · · · · · · · · · · · · · · · · · ·		
 		· · · · · ·
 		[3]

(ii) Sketch the apparatus that you would use to obtain bromine from a mixture of bromine and ammonia. Explain your choice.

F

12			etrons in their valence shell can combine with atoms with ectrons in their valence shell.	
	(a)	State	e the type of bonding present between the atoms.	
				[1]
	(b)		w 'dot and cross' diagrams to show the combination between the ator wing valence electrons only. Name the compound formed.	ms,
			Name	[3]
	(c)	Exp (i)	lain why molten ionic compounds will conduct electricity in the molten state,	
				[2]
		(ii)	ionic compounds have high boiling point.	
				 [2]

(a)	Periodic Table. For these three elements, suggest one similarity and on difference in terms of the electronic structure.	
		[יין

DATA SHEET

Colours of Some Common Metal Hydroxides

calcium hydroxide	white
copper(II) hydroxide	light blue
iron(II) hydroxide	green
iron(III) hydroxide	red-brown
lead(II) hydroxide	white
zinc hydroxide	white

The Periodic Table of Elements

	7	<u> </u>					_			<u> </u>			-						
	0	O 문 를 4	₽ \$	\$ § 8	18	¥	28.4 €	38	<u>\$</u>	2 8 8	¥	×	131	98	준	A I			
	ΛII		οц	fluorine 19	17	ರ	obtorine 35.5	35	à	bromine 80	S		odine 127	85	¥	setatine			
	ΙĀ		∞ C	0xygen 16	16	တ	13 E	34	Se	selenium 79	52	e,	teliurtum 128	\$	ď	potentum	116	Ľ	HACKIII I AND AND A
	^		~ 2	nitrogen 14	35	۵.	shosphorus 31	33	Ş	arsenio 75	51	S S	antimony 122	83	ã	blamuth 209			
	_		ω (5 gg (2	27	Ø	allton 28	32	8	germanium 73	25	જ	5 <u>7</u>	82	6	₽ 2	114	F	III III
			co a	o go F	13	¥	akımintum 27	ર્જ	Ğ	E P	49	=	115 115	84	F	thaillum 204			
			· L					8	5	2 Z	\$	ਲ	radmium 112	8	呈	mercuay 201	112	ຽ	umonusado:
								530	ਠੋ	84 44	47	8	108	79	₹	197 197	111	₽.	umuachuso)
8								28	Z	10 cke	9	2	palladium 106	78	ፚ	mulage 196	110	ර	
Group								27	පි	# G	645	£	103	11	<u>ٿ</u>	192 192	109	Z,	Lineuseu I
		- Hydrogen						28	æ	10 G	4	2	ruthersum 101	192	ő	190	±08	£	Lasseur L
			.					25	Ę	mangainese 55	43	ပ	tectmetium	22	8	mentum 186	107	ត	
			requir	Q 8				24	Ö	chomium	42	2	motyodenum 96	74	*	tengen 78	8	8	umbiogees
		Š	proton (atomic) number	atomic symbol name relative atomic mass				23	>	yanadium 51	4	2	nioblum 93	73	, co	Tantahan 181	2	පි	Cupus I
			proton					22	F	thankun 48	8	7	zirconium 91	2	=	haffnum 178	\$	2	Rutherfordium
			, }		ئ س			N	υ V	SCandium 45	88	·>-	E C	57-71	ten Bramoids		89 - 103	ectivoide	
	=		4	beryllium o	\$ 5	. ₽	magnesium 24	+			+-	in	Strontium	25	ď	barrum 137	1		raction
			ത	コ <u>量</u> ト	1.	- 2	man occ	2	<u> </u>	potassium	8	æ	rubidum 85	25	5	Caesium	88	芷	francium

lanthanoids actinoids
57 La ienthenum 139 Ac Ac acthrium
8 9 6 t muse 252
59 Pr 141 91 Pa protectinam 231
60 Nd Nd 144 144 U U 238
Pm Pm normethium 93 Np Np
Sm Sm 150 150 Pu putonium
63 Eu europium 152 152 Am Am americum
64 Gdd gdddinium 157 Cm Cm
65 Tb (erblum 159 97 BK Br Br
98 Dy 78prostum 163 98 Cr Cr
67 Ho holmlum 165 99 Es neteintum
8 中 65 65 6 1
Mid Mid Mid Mid Mid Mid
70 Yb yterbium 173 102 No nobellum
71 Lu Moefium 175 103 Lr Iswrendun

The volume of one mole of any gas is 24 dm³ at room temperature and pressure (r.t.p.).

PEIRCE SECONDARY SCHOOL MID-YEAR EXAMINATION 2019 SECONDARY THREE EXPRES MARKING SCHEME

5076/01 15 May 2019

9	ice)
STR	Cho
Ξ	tiple
<u>5</u>	Mark
	- - -
三	'apeı
(J)	о.

10	4	20	m
6	ပ	19	m
89	۵	18	၁
7	Q	17	O
9	Q	16	¥
2	4	15	ပ
4	A	14	A
က	O	13	A
2	A	12	ပ
1	as.	11	8

5076/03 7 May 2019

S/No	S/No Answers	Remarks
	Section A	-
1(a)(i)	Simple distillation	[1]
1(a)(ii)	To cool/condense the vapour into pure water	[1]

Setter: Mr Tan Kok Heong

Paper 3 (Theory)

2

S/No

1(b)

(C)

2(a)

2(b)

2(c)

п	٩
٠.	п

2(d)	Another solvent such as ethanol instead of water could be used	[1]	
S/No	Answers		Remarks
3(a)	Solid particles are very closely packed and hence denser, gas particles are spread far apart and less dense. Therefore there are more particles per unit volume in a solid.	Ξ	
3(b)	Gas particles have lots of spaces between them as the particles are spread far apart, solid particles are packed very closely together in an orderly manner with hardly any spaces between them.	Ξ	
3(c)	Liquid particles slide over each other and flow throughout the liquid, solid particles can only vibrate about its fixed position.	Ξ	
4 (a)	ethanol	[1]	
4(b)	lodine	Ξ	
4(c)	hydrogen chloride	Ξ	
4(d)(l)	Hydrogen	Ξ	

4(d)(ii)	m	[7]
S/No	Answers	Remarks
5(a)	air	[1]
5(b)	sea water	[1]
5(c)	brass	[1]
5(d)	water/salt	Ţ
5(e)	sugar	
5(f)	copper wire	[1]

PartnerInLearning

More papers at www.testpapersfree.com

S/No	Answers	Remarks	S 3
6(a)	Nucleon number/mass number/total number of proton and number of neutrons	Ξ	
(p)	○ neutrons ● protons	[2]	
e (c)	9	[1]	
(p)9		Ξ	

LQ

٠.	

S/No	Answers						Remarks
	noi	formula	number of protons	number of neutrons	number of electrons		
7(a)	potassium	³⁹ K ⁺	19	20	18	<u></u>	
	oxide	16O ²⁻	œ	∞	10		
							as and other consequences of the second seco
(j)(q)2	This is because they are both atoms of the of protons but different number of neutrons.	they are both ifferent numbe	atoms of the sair of neutrons.	me element witl	This is because they are both atoms of the same element with the same number of protons but different number of neutrons.	<u>E</u>	
7(b)(ii)	Mass of 100 atoms of K = (94 × 39) + (6 × Average relative mass of K = 3912 + 100 =	oms of K = (94 e mass of K = (Mass of 100 atoms of K = (94 × 39) + (6 × 41) = Average relative mass of K = 3912 + 100 = 39.1	41) = 3912 = 39.1		[2]	

}	Answers	
8(a)	O and Q	[1]
8(b)		[1]
8(c)	Z	[1]
8(d)	N and O	[1]
8(e)	M and P	T
8(f)	G	[2]

PartnerInLearning

More papers at www.testpapersfree.com

_

S/No	Answers		Remarks
9(a)	It refers to the outer electron shell	[7]	
(q)6	Group VII	[1]	
(i)(c)(g	lonic bonding	[7]	
9(c)(ii)		[2]	
9(c)(iii) NaX		Ξ	

00

S/No	Answers	Remarks
	Section B	
10(a)(l)	10(a)(t) Measuring cylinder	[1]
10(a)(ii)	Gas syringe	
10(a)(iii)	10(a)(iii) Electronic balance	[1]
10(a)(iv)	10(a)(iv) Thermometer	[1]
10(a)(v)	Burette	[1]

G)

S/No	Answers	Remarks	
10(b)(i)	Ensure all the sulfuric acid has been completely reacted or used up.	[1]	
10(b)(ii)	Separate the excess/unreacted copper(II) oxide from the mixture.	[1]	
10(b)(iii)	Obtain a saturated solution.	[1]	
10(b)(iv)	10(b)(iv) Allow crystals of copper(II) sulfate to form through slow cooling.	[1]	
10(b)(v)	Ensure crystals of copper(II) sulfate do not decompose.	. [1]	

S/No	Answers		Remarks
	• iron(III) chloride <u>FeC/3</u>	2	
11(a)(i)	• magnesium chloride MgC/2	[4]	
11(a)(ii)	11(a)(ii) Ionic bonding	[1]	
11(a)(III)	The melting point of magnesium chloride can be tested to see if it is a constant.	[1]	
11(b)(i)	neighbor of cartery than the summaries of cartery than the carter of water is used as helium is insoluble in water while ammonia is	[3]	[1] for drawing [1] for labels [1] for explanation
11(b)(ii)	soluble in water. mitter of promine of promine of promine vapour is denser than air, hence it will sink while ammonia is less denser than air and will escape out of the gas jar.	<u>6</u>	[1] for drawing [1] for labels [1] for explanation

S/No	Answers	Rei	Remarks
12(a)	lonic bonding	Ξ	
12(b)	magnesium chloride [1]	Cho can [3] res [1] [1] stat	Choice of positive and negative ions can be any Gp II and VII elements respectively. [1] per ion, for negative ion it must be stated that 2 ions are required to score the mark
12(c)(i)	Molten ionic compounds have mobile ions [1]; these free-moving positive and negative ions act as charge carriers that can conduct electricity [4].	[2]	
12(c)(ii)	There are strong electrostatic forces of attraction between the oppositely charged ions [1], hence a large amount of energy is required to overcome them [1].	[2]	
12(d)	These three elements have 1 valence (outer) electron [1] but different number of electron shells [1].	[2]	